ﻻ يوجد ملخص باللغة العربية
Using the quantum information picture to describe the early universe as a time dependent quantum density matrix, with time playing the role of a stochastic variable, we compute the non-gaussian features in the distribution of primordial fluctuations. We use a quasi de Sitter model to compute the corresponding quantum Fisher information function as the second derivative of the relative entanglement entropy for the density matrix at two different times. We define the curvature fluctuations in terms of the time quantum estimator. Using standard quantum estimation theory we compute the non-gaussian features in the statistical distribution of primordial fluctuations. Our approach is model independent and only relies on the existence of a quasi de Sitter phase. We show that there are primordial non-gaussianities, both in the form of squeezed and equilateral shapes. The squeezed limit gives a value of $f_{rm NL} sim n_s-1$. In the equilateral limit we find that $f_{rm NL} sim 0.03$. The equilateral non-gaussianity is due to the non-linearity of Einsteins equation. On the other hand, the squeezed one is due to the quantum nature of clock synchronization and thus real and cannot be gauged away as a global curvature. We identify a new effect: {it clock bias} which is a pure quantum effect and introduces a bias in the spectral tilt and running of the power spectrum of order $sim 10^{-4}$, which could be potentially measurable and yield precious information on the quantum nature of the early Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One
We study primordial non-gaussianity in supersolid inflation. The dynamics of supersolid is formulated in terms of an effective field theory based on four scalar fields with a shift symmetric action minimally coupled with gravity. In the scalar sector
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu
We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multi
Enormous information about interactions is contained in the non-Gaussianities of the primordial curvature perturbations, which are essential to break the degeneracy of inflationary models. We study the primordial bispectra for G-inflation models pred