ﻻ يوجد ملخص باللغة العربية
We develop a data-driven approach to the computation of a-posteriori feasibility certificates to the solution sets of variational inequalities affected by uncertainty. Specifically, we focus on instances of variational inequalities with a deterministic mapping and an uncertain feasibility set, and represent uncertainty by means of scenarios. Building upon recent advances in the scenario approach literature, we quantify the robustness properties of the entire set of solutions of a variational inequality, with feasibility set constructed using the scenario approach, against a new unseen realization of the uncertainty. Our results extend existing results that typically impose an assumption that the solution set is a singleton and require certain non-degeneracy properties, and thereby offer probabilistic feasibility guarantees to any feasible solution. We show that assessing the violation probability of an entire set of solutions, rather than of a singleton, requires enumeration of the support constraints that shape this set. Additionally, we propose a general procedure to enumerate the support constraints that does not require a closed form description of the solution set, which is unlikely to be available. We show that robust game theory problems can be modelling via uncertain variational inequalities, and illustrate our theoretical results through extensive numerical simulations on a case study involving an electric vehicle charging coordination problem.
In this paper a distribution-free methodology is presented for providing robustness guarantees for Nash equilibria (NE) of multi-agent games. Leveraging recent a posteriori developments of the so called scenario approach (Campi et al., 2018), we prov
Variational inequalities are modelling tools used to capture a variety of decision-making problems arising in mathematical optimization, operations research, game theory. The scenario approach is a set of techniques developed to tackle stochastic opt
We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain multi-agent optimization programs. We first assume that only the constraints of the program are affected by uncertainty, while the cost function
We study variational inequalities which are governed by a strongly monotone and Lipschitz continuous operator $F$ over a closed and convex set $S$. We assume that $S=Ccap A^{-1}(Q)$ is the nonempty solution set of a (multiple-set) split convex feasib
The regularity theory for variational inequalities over polyhedral sets developed in a series of papers by Robinson, Ralph and Dontchev-Rockafellar in the 90s has long become classics of variational analysis. But in the available proofs of almost all