ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Partial Removal: A Neural Network Heuristic for Large Neighborhood Search

381   0   0.0 ( 0 )
 نشر من قبل Zhixin Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel neural network design that learns the heuristic for Large Neighborhood Search (LNS). LNS consists of a destroy operator and a repair operator that specify a way to carry out the neighborhood search to solve the Combinatorial Optimization problems. The proposed approach in this paper applies a Hierarchical Recurrent Graph Convolutional Network (HRGCN) as a LNS heuristic, namely Dynamic Partial Removal, with the advantage of adaptive destruction and the potential to search across a large scale, as well as the context-awareness in both spatial and temporal perspective. This model is generalized as an efficient heuristic approach to different combinatorial optimization problems, especially to the problems with relatively tight constraints. We apply this model to vehicle routing problem (VRP) in this paper as an example. The experimental results show that this approach outperforms the traditional LNS heuristics on the same problem as well. The source code is available at href{https://github.com/water-mirror/DPR}{https://github.com/water-mirror/DPR}.



قيم البحث

اقرأ أيضاً

Recent years have witnessed the popularity and success of graph neural networks (GNN) in various scenarios. To obtain data-specific GNN architectures, researchers turn to neural architecture search (NAS), which has made impressive success in discover ing effective architectures in convolutional neural networks. However, it is non-trivial to apply NAS approaches to GNN due to challenges in search space design and the expensive searching cost of existing NAS methods. In this work, to obtain the data-specific GNN architectures and address the computational challenges facing by NAS approaches, we propose a framework, which tries to Search to Aggregate NEighborhood (SANE), to automatically design data-specific GNN architectures. By designing a novel and expressive search space, we propose a differentiable search algorithm, which is more efficient than previous reinforcement learning based methods. Experimental results on four tasks and seven real-world datasets demonstrate the superiority of SANE compared to existing GNN models and NAS approaches in terms of effectiveness and efficiency. (Code is available at: https://github.com/AutoML-4Paradigm/SANE).
Designing neural networks for object recognition requires considerable architecture engineering. As a remedy, neuro-evolutionary network architecture search, which automatically searches for optimal network architectures using evolutionary algorithms , has recently become very popular. Although very effective, evolutionary algorithms rely heavily on having a large population of individuals (i.e., network architectures) and is therefore memory expensive. In this work, we propose a Regularized Evolutionary Algorithm with low memory footprint to evolve a dynamic image classifier. In details, we introduce novel custom operators that regularize the evolutionary process of a micro-population of 10 individuals. We conduct experiments on three different digits datasets (MNIST, USPS, SVHN) and show that our evolutionary method obtains competitive results with the current state-of-the-art.
The main goal of the multitasking optimization paradigm is to solve multiple and concurrent optimization tasks in a simultaneous way through a single search process. For attaining promising results, potential complementarities and synergies between t asks are properly exploited, helping each other by virtue of the exchange of genetic material. This paper is focused on Evolutionary Multitasking, which is a perspective for dealing with multitasking optimization scenarios by embracing concepts from Evolutionary Computation. This work contributes to this field by presenting a new multitasking approach named as Coevolutionary Variable Neighborhood Search Algorithm, which finds its inspiration on both the Variable Neighborhood Search metaheuristic and coevolutionary strategies. The second contribution of this paper is the application field, which is the optimal partitioning of graph instances whose connections among nodes are directed and weighted. This paper pioneers on the simultaneous solving of this kind of tasks. Two different multitasking scenarios are considered, each comprising 11 graph instances. Results obtained by our method are compared to those issued by a parallel Variable Neighborhood Search and independent executions of the basic Variable Neighborhood Search. The discussion on such results support our hypothesis that the proposed method is a promising scheme for simultaneous solving community detection problems over graphs.
This paper reviews the overview of the dynamic shortest path routing problem and the various neural networks to solve it. Different shortest path optimization problems can be solved by using various neural networks algorithms. The routing in packet s witched multi-hop networks can be described as a classical combinatorial optimization problem i.e. a shortest path routing problem in graphs. The survey shows that the neural networks are the best candidates for the optimization of dynamic shortest path routing problems due to their fastness in computation comparing to other softcomputing and metaheuristics algorithms
146 - Mingde Zhao , Hongwei Ge , Yi Lian 2018
The generalization abilities of heuristic optimizers may deteriorate with the increment of the search space dimensionality. To achieve generalized performance across Large Scale Blackbox Optimization (LSBO) tasks, it ispossible to ensemble several he uristics and devise a meta-heuristic to control their initiation. This paper first proposes a methodology of transforming LSBO problems into online decision processes to maximize efficiency of resource utilization. Then, using the perspective of multi-armed bandits with non-stationary reward distributions, we propose a meta-heuristic based on Temporal Estimation of Rewards (TER) to address such decision process. TER uses a window for temporal credit assignment and Boltzmann exploration to balance the exploration-exploitation tradeoff. The prior-free TER generalizes across LSBO tasks with flexibility for different types of limited computational resources (e.g. time, money, etc.) and is easy to be adapted to new tasks for its simplicity and easy interface for heuristic articulation. Tests on the benchmarks validate the problem formulation and suggest significant effectiveness: when TER is articulated with three heuristics, competitive performance is reported across different sets of benchmark problems with search dimensions up to 10000.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا