ﻻ يوجد ملخص باللغة العربية
The tetragonal ferrimagnetic Mn$_3$Ga exhibits a wide range of intriguing magnetic properties. Here, we report the emergence of topologically nontrivial nodal lines in the absence of spin orbit coupling (SOC) which are protected by both mirror and $C_{4z}$ rotational symmetries. In the presence of SOC we demonstrate that the doubly degenerate nontrivial crossing points evolve into $C_{4z}$-protected Weyl nodes with chiral charge of $pm$2. Furthermore, we have considered the experimentally reported noncollinear ferrimagnetic structure, where the magnetic moment of the Mn$_I$ atom (on the Mn-Ga plane) is tilted by an angle $theta$ with respect to the crystallographic $c$ axis. The evolution of the Weyl nodes with $theta$ reveals that the double Weyl nodes split into a pair of charge-1 Weyl nodes whose separation can be tuned by the magnetic orientation in the noncollinear ferrimagnetic structure.
The ferromagnetic phase of the cubic antiperovskite Mn$_3$ZnC is suggested from first-principles calculation to be a nodal line Weyl semimetal. Features in the electronic structure that are the hallmark of a nodal line Weyl state, a large density of
We report electrical current switching of noncollinear antiferromagnetic (AFM) Mn$_3$GaN/Pt bilayers at room temperature. The Hall resistance of these bilayers can be manipulated by applying a pulse current of $1.5times10^6$~A/cm$^2$, whereas no sign
We report the magnetic structure of room-temperature-stable, monoclinic Mn$_3$As$_2$ at 3 K and 250 K using neutron powder diffraction measurements. From magnetometry data, the Curie temperature of Mn$_3$As$_2$ was confirmed to be around 270 K. Calor
The static and dynamic magnetic properties of tetragonally distorted Mn--Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5~T using SQUID magnetometry. For the pure Mn$_{1.6}$Ga film, the saturation magne
Noncollinear antiferromagnets have promising potential to replace ferromagnets in the field of spintronics as high-density devices with ultrafast operation. To take full advantage of noncollinear antiferromagnets in spintronics applications, it is im