ﻻ يوجد ملخص باللغة العربية
We present a learning-based method for extracting whistles of toothed whales (Odontoceti) in hydrophone recordings. Our method represents audio signals as time-frequency spectrograms and decomposes each spectrogram into a set of time-frequency patches. A deep neural network learns archetypical patterns (e.g., crossings, frequency modulated sweeps) from the spectrogram patches and predicts time-frequency peaks that are associated with whistles. We also developed a comprehensive method to synthesize training samples from background environments and train the network with minimal human annotation effort. We applied the proposed learn-from-synthesis method to a subset of the public Detection, Classification, Localization, and Density Estimation (DCLDE) 2011 workshop data to extract whistle confidence maps, which we then processed with an existing contour extractor to produce whistle annotations. The F1-score of our best synthesis method was 0.158 greater than our baseline whistle extraction algorithm (~25% improvement) when applied to common dolphin (Delphinus spp.) and bottlenose dolphin (Tursiops truncatus) whistles.
Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to differ
End-to-end (E2E) automatic speech recognition (ASR) models have recently demonstrated superior performance over the traditional hybrid ASR models. Training an E2E ASR model requires a large amount of data which is not only expensive but may also rais
We present an automated method to track and identify neurons in C. elegans, called fast Deep Learning Correspondence or fDLC, based on the transformer network architecture. The model is trained once on empirically derived synthetic data and then pred
Metaproteomics are becoming widely used in microbiome research for gaining insights into the functional state of the microbial community. Current metaproteomics studies are generally based on high-throughput tandem mass spectrometry (MS/MS) coupled w
COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning model to c