ﻻ يوجد ملخص باللغة العربية
When magnetohydrodynamic turbulence evolves in the presence of a large-scale mean magnetic field, an anisotropy develops relative to that preferred direction. The well-known tendency is to develop stronger gradients perpendicular to the magnetic field, relative to the direction along the field. This anisotropy of the spectrum is deeply connected with anisotropy of estimated timescales for dynamical processes, and requires reconsideration of basic issues such as scale locality and spectral transfer. Here analysis of high-resolution three-dimensional simulations of unforced magnetohydrodynamic turbulence permits quantitative assessment of the behavior of theoretically relevant timescales in Fourier wavevector space. We discuss the distribution of nonlinear times, Alfven times, and estimated spectral transfer rates. Attention is called to the potential significance of special regions of the spectrum, such as the two-dimensional limit and the critical balance region. A formulation of estimated spectral transfer in terms of a suppression factor supports a conclusion that the quasi two-dimensional fluctuations (characterized by strong nonlinearities) are not a singular limit, but may be in general expected to make important contributions.
It is shown that in the framework of the weak turbulence theory, the autocorrelation and cascade timescales are always of the same order of magnitude. This means that, contrary to the general belief, any model of turbulence which implies a large numb
Observations of solar wind turbulence indicate the existence of multi-scale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multi-scale PBSs and in particular their formation in co
In this work a weak-turbulence closure is used to determine the structure of the two-time power spectrum of weak magnetohydrodynamic (MHD) turbulence from the nonlinear equations describing the dynamics. The two-time energy spectrum is a fundamental
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv{e}n waves, which interact and rapidly generate strong
We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uni