ﻻ يوجد ملخص باللغة العربية
Very large volumes of spatial data increasingly become available and demand effective management. While there has been decades of research on spatial data management, few works consider the current state of commodity hardware, having relatively large memory and the ability of parallel multi-core processing. In this work, we re-consider the design of spatial indexing under this new reality. Specifically, we propose a main-memory indexing approach for objects with spatial extent, which is based on a classic regular space partitioning into disjoint tiles. The novelty of our index is that the contents of each tile are further partitioned into four classes. This second-level partitioning not only reduces the number of comparisons required to compute the results, but also avoids the generation and elimination of duplicate results, which is an inherent problem of spatial indexes based on disjoint space partitioning. The spatial partitions defined by our indexing scheme are totally independent, facilitating effortless parallel evaluation, as no synchronization or communication between the partitions is necessary. We show how our index can be used to efficiently process spatial range queries and drastically reduce the cost of the refinement step of the queries. In addition, we study the efficient processing of numerous range queries in batch and in parallel. Extensive experiments on real datasets confirm the efficiency of our approaches.
Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the in
Due to the coarse granularity of data accesses and the heavy use of latches, indices in the B-tree family are not efficient for in-memory databases, especially in the context of todays multi-core architecture. In this paper, we present PI, a Parall
The spatial join is a popular operation in spatial database systems and its evaluation is a well-studied problem. As main memories become bigger and faster and commodity hardware supports parallel processing, there is a need to revamp classic join al
A corpus of recent work has revealed that the learned index can improve query performance while reducing the storage overhead. It potentially offers an opportunity to address the spatial query processing challenges caused by the surge in location-bas
In data warehousing, Extract-Transform-Load (ETL) extracts the data from data sources into a central data warehouse regularly for the support of business decision-makings. The data from transaction processing systems are featured with the high freque