ﻻ يوجد ملخص باللغة العربية
Quantum sensing explores protocols using the quantum resource of sensors to achieve highly sensitive measurement of physical quantities. The conventional schemes generally use unitary dynamics to encode quantities into sensor states. In order to measure the spectral density of a quantum reservoir, which plays a vital role in controlling the reservoir-caused decoherence to microscopic systems, we propose a nonunitary-encoding optical sensing scheme. Although the nonunitary dynamics for encoding in turn degrades the quantum resource, we surprisingly find a mechanism to make the encoding time a resource to improve the precision and to make the squeezing of the sensor a resource to surpass the shot-noise limit. Our result shows that it is due to the formation of a sensor-reservoir bound state. Enriching the family of quantum sensing, our scheme gives an efficient way to measure the quantum reservoir and might supply an insightful support to decoherence control.
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which ca
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These
The rapidly developing quantum technologies have put forward a requirement to precisely control and measure temperature of microscopic matters at quantum level. Many quantum thermometry schemes have been proposed. However, precisely measuring low tem
Every quantum system is coupled to an environment. Such system-environment interaction leads to temporal correlation between quantum operations at different times, resulting in non-Markovian noise. In principle, a full characterisation of non-Markovi
Characterisation protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devic