ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Cosmic Rays with Fe K$alpha$ Line Structures Generated by Multiple Ionization Process

141   0   0.0 ( 0 )
 نشر من قبل Hiromichi Okon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernova remnants (SNRs) have been regarded as major acceleration sites of Galactic cosmic rays. Recent X-ray studies revealed neutral Fe K$alpha$ line emission from dense gas in the vicinity of some SNRs, which can be best interpreted as K-shell ionization of Fe atoms in the gas by sub-relativistic particles accelerated in the SNRs. In this Letter, we propose a novel method of constraining the composition of particles accelerated in SNRs, which is currently unknown. When energetic heavy ions collide with target atoms, their strong Coulomb field can easily cause simultaneous ejection of multiple inner-shell electrons of the target. This results in shifts in characteristic X-ray line energies, forming distinctive spectral structures. Detection of such structures in the neutral Fe K$alpha$ line strongly supports the particle ionization scenario, and furthermore provides direct evidence of heavy ions in the accelerated particles. We construct a model for the Fe K$alpha$ line structures by various projectile ions utilizing atomic-collision data.



قيم البحث

اقرأ أيضاً

We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron K$alpha$ line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, fo r a non-rotating and a maximally-rotating black hole. We compare the predicted disk line energies with those measured in an archival sample of active galactic nuclei observed with {it Chandra}, {it XMM-Newton} and {it Suzaku}, and discuss whether the line energies are consistent with the radial distances inferred from reverberation studies. We also suggest using rapidly-variable iron K$alpha$ lines to estimate the viscosity parameter of an accretion disk. There is a forbidden region in the line energy versus Eddington ratio plane, at low Eddington ratios, where an accretion disk cannot produce highly-ionized iron K$alpha$ lines. If such emission is observed in low-Eddington-ratio sources, it is either coming from a highly-ionized outflow, or is a blue-shifted component from fast-moving neutral matter.
The centroid energy of the Fe K$alpha$ line has been used to identify the progenitors of supernova remnants (SNRs). These investigations generally considered the energy of the centroid derived from the spectrum of the entire remnant. Here we use {it XMM-Newton} data to investigate the Fe K$alpha$ centroid in 6 SNRs: 3C~397, N132D, W49B, DEM L71, 1E 0102.2-7219, and Kes 73. In Kes 73 and 1E 0102.2-7219, we fail to detect any Fe K$alpha$ emission. We report a tentative first detection of Fe K$alpha$ emission in SNR DEM L71, with a centroid energy consistent with its Type Ia designation. In the remaining remnants, the spatial and spectral sensitivity is sufficient to investigate spatial variations of the Fe K$alpha$ centroid. We find in N132D and W49B that the centroids in different regions are consistent with that derived from the overall spectrum, although not necessarily with the remnant type identified via other means. However, in SNR 3C~397, we find statistically significant variation in the centroid of up to 100 eV, aligning with the variation in the density structure around the remnant. These variations span the intermediate space between centroid energies signifying core-collapse and Type Ia remnants. Shifting the dividing line downwards by 50 eV can place all the centroids in the CC region, but contradicts the remnant type obtained via other means. Our results show that caution must be used when employing the Fe K$alpha$ centroid of the entire remnant as the sole diagnostic for typing a remnant.
We analyze the processes governing cosmic-ray (CR) penetration into molecular clouds and the resulting generation of gamma-ray emission. The density of CRs inside a cloud is depleted at lower energies due to the self-excited MHD turbulence. The deple tion depends on the effective gas column density (size) of the cloud. We consider two different environments where the depletion effect is expected to be observed. For the Central Molecular Zone, the expected range of CR energy depletion is $Elesssim 10$ GeV, leading to the depletion of gamma-ray flux below $E_gammaapprox 2$ GeV. This effect can be important for the interpretation of the GeV gamma-ray excess in the Galactic Center, which has been revealed from the standard model of CR propagation (assuming the CR spectrum inside a cloud to be equal to the interstellar spectrum). Furthermore, recent observations of some local molecular clouds suggest the depletion of the gamma-ray emission, indicating possible self-modulation of the penetrating low-energy CRs.
It was recently discovered that in some regions of the Galaxy, the cosmic ray (CR) abundance is several orders of magnitude higher than previously thought. Additionally, there is evidence that in molecular cloud envelopes, the CR ionization may be do minated by electrons. We show that for regions with high, electron-dominated ionization, the penetration of CR electrons into molecular clouds is modulated by the electric field that develops as a result of the charge they deposit. We evaluate the significance of this novel mechanism of self-modulation and show that the CR penetration can be reduced by a factor of a few to a few hundred in high-ionization environments, such as those found near the Galactic center.
Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped in two classes, named Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X-1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources. We analysed the first NuSTAR observation of this source to study its spectral emission exploiting the high statistics data collected by this satellite. Examining the colour-colour diagram, the source was probably observed during the lower normal and flaring branches of its Z-track. We separated the data from the two branches in order to investigate the evolution of the source along the track. We fitted the 3-60 keV NuSTAR spectra using the same models for both the branches. We adopted two description for the continuum: in the first case we used a blackbody and a thermal Comptonisation with seed photons originating in the accretion disc; in the second one, we adopted a disc-blackbody and a Comptonisation with a blackbody-shaped spectrum of the incoming seed photons. A power-law fitting the high energy emission above 20 keV was also required in both cases. The two models provide the same physical scenario for the source in both the branches: a blackbody temperature between 0.8 and 1.5 keV, a disc-blackbody with temperature between 0.4 and 0.6 keV, and an optically thick Comptonising corona with optical depth between 6 and 10 and temperature about 3 keV. Furthermore, two lines related to the K$alpha$ and K$beta$ transitions of the He-like Fe XXV ions were detected at 6.6 keV and 7.8 keV, respectively. A hard tail modelled by a power law with a photon index between 2 and 3 was also required for both the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا