ﻻ يوجد ملخص باللغة العربية
The Brown-Ravenhall operator was initially proposed as an alternative to describe the fermion-fermion interaction via Coulomb potential and subject to relativity. This operator is defined in terms of the associated Dirac operator and the projection onto the positive spectral subspace of the free Dirac operator. In this paper, we propose to analyze a modified version of the Brown-Ravenhall operator in two-dimensions. More specifically, we consider the Brown-Ravenhall operator with an attractive potential given by a Bessel-Macdonald function (also known as $K_0$-potential) using the Foldy-Wouthuysen unitary transformation. The $K_0$-potential is derived of the parity-preserving ${rm QED}_3$ model as a framework for evaluation of the fermion-fermion interaction potential. We prove that the two-dimensional Brown-Ravenhall operator with $K_0$-potential is bounded from below when the coupling constant is below a specified critical value (a property also referred to as stability). As by product, it is shown that the operator is in fact positive. We also investigate the location and nature of the spectrum of the Brown-Ravenhall operator with $K_0$-potential.
We analyze the Schrodinger operator in two-dimensions with an attractive potential given by a Bessel-Macdonald function. This operator is derived in the non-relativistic approximation of planar quantum electrodynamics (${rm QED}_3$) models as a frame
We interpret aspects of the Schur indices, that were identified with characters of highest weight modules in Virasoro $(p,p)=(2,2k+3)$ minimal models for $k=1,2,dots$, in terms of paths that first appeared in exact solutions in statistical mechanics.
We derive the nucleon-nucleon isoscalar spin-orbit potential from the Skyrme model and find good agreement with the Paris potential. This solves a problem that has been open for more than thirty years and gives a new geometric understanding of the sp
We solve the two-component Dirac equation in the presence of a spatially one dimensional symmetric attractive cusp potential. The components of the spinor solution are expressed in terms of Whittaker functions. We compute the bound states solutions a
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.