ترغب بنشر مسار تعليمي؟ اضغط هنا

PyCDFT: A Python package for constrained density functional theory

73   0   0.0 ( 0 )
 نشر من قبل Wennie Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object-oriented, customizable implementation of CDFT, and allows for both single-point self-consistent-field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn-Sham Hamiltonian. Here we demonstrate the use of PyCDFT by performing calculations with a massively parallel first-principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available at https://github.com/hema-ted/pycdft/.



قيم البحث

اقرأ أيضاً

We present a constrained density functional perturbation theory scheme for the calculation of structural and harmonic vibrational properties of insulators in the presence of an excited and thermalized electron-hole plasma. The method is ideal to tame ultrafast light induced structural transitions in the regime where the photocarriers thermalize faster than the lattice, the electron-hole recombination time is longer than the phonon period and the photocarrier concentration is large enough to be approximated by an electron-hole plasma. The complete derivation presented here includes total energy, forces and stress tensor, variable cell structural optimization, harmonic vibrational properties and the electron-phonon interaction. We discuss in detail the case of zone center optical phonons not conserving the number of electrons and inducing a Fermi shift in the photo-electron and hole distributions. We validate our implementation by comparing with finite differences in Te and VSe2. By calculating the evolution of the phonon spectrum of Te, Si and GaAs as a function of the fluence of the incoming laser light, we demonstrate that even at low fluences, corresponding to approximately 0.1 photocarriers per cell, the phonon spectrum is substantially modified with respect to the ground state one with new Kohn anomalies appearing and a substantial softening of zone center optical phonons. Our implementation can be efficiently used to detect reversible transient phases and irreversible structural transition induced by ultrafast light absorption.
We present TB2J, a Python package for the automatic computation of magnetic interactions, including exchange and Dzyaloshinskii-Moriya interactions, between atoms of magnetic crystals from the results of density functional calculations. The program i s based on the Greens function method with the local rigid spin rotation treated as a perturbation. As input,the package uses the output of either Wannier90, which is interfaced with many density functional theory packages,or of codes based on localized orbitals. A minimal user input is needed, which allows for easy integration into high-throughput workflows. The package is open source under BSD 2-Clause license, available at https://github.com/mailhexu/TB2J.
In approximate Kohn-Sham density-functional theory, self-interaction manifests itself as the dependence of the energy of an orbital on its fractional occupation. This unphysical behavior translates into qualitative and quantitative errors that pervad e many fundamental aspects of density-functional predictions. Here, we first examine self-interaction in terms of the discrepancy between total and partial electron removal energies, and then highlight the importance of imposing the generalized Koopmans condition -- that identifies orbital energies as opposite total electron removal energies -- to resolve this discrepancy. In the process, we derive a correction to approximate functionals that, in the frozen-orbital approximation, eliminates the unphysical occupation dependence of orbital energies up to the third order in the single-particle densities. This non-Koopmans correction brings physical meaning to single-particle energies; when applied to common local or semilocal density functionals it provides results that are in excellent agreement with experimental data -- with an accuracy comparable to that of GW many-body perturbation theory -- while providing an explicit total energy functional that preserves or improves on the description of established structural properties.
107 - Louk Rademaker 2020
These lecture notes contain a brief practical introduction to doing density functional theory calculations for crystals using the open source Quantum Espresso software. The level is aimed at graduate students who are studying condensed matter or soli d state physics, either theoretical or experimental.
I summarize Density Functional Theory (DFT) in a language familiar to quantum field theorists, and introduce several apparently novel ideas for constructing {it systematic} approximations for the density functional. I also note that, at least within the large $K$ approximation ($K$ is the number of electron spin components), it is easier to compute the quantum effective action of the Coulomb photon field, which is related to the density functional by algebraic manipulations in momentum space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا