ﻻ يوجد ملخص باللغة العربية
Runaway stellar collisions in dense star clusters are invoked to explain the presence of very massive stars or blue stragglers in the center of those systems. This process has also been explored for the first star clusters in the Universe and shown to yield stars that may collapse at some points into an intermediate mass black hole. Although the early evolution of star clusters requires the explicit modeling of the gas out of which the stars form, these calculations would be extremely time-consuming and often the effects of the gas can be accurately treated by including a background potential to account for the extra gravitational force. We apply this approximation to model the early evolution of the first dense star clusters formed in the Universe by performing $N$-body simulations, our goal is to understand how the additional gravitational force affects the growth of a very massive star through stellar mergers in the central parts of the star cluster. Our results show that the background potential increases the velocities of the stars, causing an overall delay in the evolution of the clusters and in the runaway growth of a massive star at the center. The population of binary stars is lower due to the increased kinetic energy of the stars, initially reducing the number of stellar collisions, and we show that relaxation processes are also affected. Despite these effects, the external potential enhances the mass of the merger product by a factor $sim$2 if the collisions are maintained for long times.
In the cores of young dense star clusters repeated stellar collisions involving the same object can occur, which has been suggested to lead to the formation of an intermediate-mass black hole. In order to verify this scenario we compute the detailed
We use computer simulation to investigate the topology of the potential energy $V({{bf R}})$ and to search for doublewell potentials (DWP) in a model glass . By a sequence of Newtonian and dissipative dynamics we find different minima of $V({{bf R}})
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associate
Recent improvements in the age dating of stellar populations and single stars allow us to study the ages and abundance of stars and galaxies with unprecedented accuracy. We here compare the relation between age and alpha-element abundances for stars
Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas a