ﻻ يوجد ملخص باللغة العربية
One of the youngest known remnants of a core-collapse supernova (SN) in our Galaxy is G320.4$-$1.2/MSH 15-52 containing an energetic pulsar with a very short (1700 yr) spindown age and likely produced by a stripped-envelope SN Ibc. Bright X-ray and radio emission north of the pulsar overlaps with an H$alpha$ nebula RCW 89. The bright X-rays there have a highly unusual and quite puzzling morphology, consisting of both very compact thermally emitting knots and much more diffuse emission of nonthermal origin. We report new X-ray observations of RCW 89 in 2017 and 2018 with Chandra that allowed us to measure the motions of many knots and filaments on decade-long time baselines. We identify a fast blast wave with a velocity of $(4000 pm 500)d_{5.2}$ km/s ($d_{5.2}$ is the distance in units of 5.2 kpc) with a purely nonthermal spectrum, and without any radio counterpart. Many compact X-ray emission knots are moving vary fast, with velocities as high as 5000 km/s, predominantly radially away from the pulsar. Their spectra show that they are Ne- and Mg-rich heavy-element SN ejecta. They have been significantly decelerated upon their recent impact with the dense ambient medium north of the pulsar. We see fast evolution in brightness and morphology of knots in just a few years. Ejecta knots in RCW 89 resemble those seen in Cas A at optical wavelengths in terms of their initial velocities and densities. They might have the same origin, still not understood but presumably related to stripped-envelope SN explosions themselves.
We report on the results from the analysis of our 114 ks Chandra HETGS observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the 3D structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler
We present Spitzer IRS and IRAC observations of the young supernova remnant E0102 (SNR 1E0102.2-7219) in the Small Magellanic Cloud. The infrared spectra show strong ejecta lines of Ne and O, with the [Ne II] line at 12.8 microns having a large veloc
We report Chandra observations of the highly asymmetric core-collapse supernova remnant G350.1-0.3. We document expansion over 9 years away from the roughly stationary central compact object, with sky-plane velocities up to $5000 d_{4.5}$ km s$^{-1}$
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare differ
We report on the gravitational wave signal computed in the context of a three-dimensional simulation of a core collapse supernova explosion of a 15 Solar mass star. The simulation was performed with our neutrino hydrodynamics code Chimera. We detail