ﻻ يوجد ملخص باللغة العربية
Star formation is a multi-scale, multi-physics problem ranging from the size scale of molecular clouds ($sim$10s pc) down to the size scales of dense prestellar cores ($sim$0.1 pc) that are the birth sites of stars. Several physical processes like turbulence, magnetic fields and stellar feedback, such as radiation pressure and outflows, are more or less important for different stellar masses and size scales. During the last decade a variety of technological and computing advances have transformed our understanding of star formation through the use of multi-wavelength observations, large scale observational surveys, and multi-physics multi-dimensional numerical simulations. Additionally, the use of synthetic observations of simulations have provided a useful tool to interpret observational data and evaluate the importance of various physical processes on different scales in star formation. Here, we review these recent advancements in both high- ($M gtrsim 8 , M_{rm odot}$) and low-mass star formation.
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostella
We have undertaken a systematic study of pre-main sequence (PMS) stars spanning a wide range of masses (0.5 - 4 Msolar), metallicities (0.1 - 1 Zsolar) and ages (0.5 - 30 Myr). We have used the Hubble Space Telescope (HST) to identify and characteris
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. T
Methods: We observed the high-mass hot core region G351.77-0.54 with ALMA and more than 16km baselines. Results: At a spatial resolution of 18/40au (depending on the distance), we identify twelve sub-structures within the inner few thousand au of t
The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimet