ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Characterises the Dust Temperature of z ~ 5.5 Star-Forming Galaxies

96   0   0.0 ( 0 )
 نشر من قبل Andreas Faisst
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The infrared spectral energy distributions (SEDs) of main-sequence galaxies in the early universe (z > 4) is currently unconstrained as infrared continuum observations are time consuming and not feasible for large samples. We present Atacama Large Millimetre Array (ALMA) Band 8 observations of four main-sequence galaxies at z ~ 5.5 to study their infrared SED shape in detail. Our continuum data (rest-frame 110$rm mu m$, close to the peak of infrared emission) allows us to constrain luminosity weighted dust temperatures and total infrared luminosities. With data at longer wavelengths, we measure for the first time the emissivity index at these redshifts to provide more robust estimates of molecular gas masses based on dust continuum. The Band 8 observations of three out of four galaxies can only be reconciled with optically thin emission redward of rest-frame 100$rm mu m$. The derived dust peak temperatures at z ~ 5.5 (38$pm$8K) are elevated compared to average local galaxies, however, 5-10K below what would be predicted from an extrapolation of the trend at $z<4$. This behaviour can be explained by decreasing dust abundance (or density) towards high redshifts, which would cause the infrared SED at the peak to be more optically thin, making hot dust more visible to the external observer. From the 850$rm mu m$ dust continuum, we derive molecular gas masses between $10^{10}$ and $10^{11},{rm M_{odot}}$ and gas fractions (gas over total mass) of 30-80% (gas depletion times of 100-220Myrs). All in all, our results provide a first measured benchmark SED to interpret future millimetre observations of normal, main-sequence galaxies in the early Universe.



قيم البحث

اقرأ أيضاً

We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trac e the distributions of star-forming galaxies in diagrams of stellar mass-star formation rate and stellar mass-metallicity. We detected CO emission lines from eleven galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Molecular gas masses and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) x 10^{10} Msun and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and that the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. The dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) x 10^{7} Msun. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) x 10^{8} yr while the results of the stacking analysis show ~3 x 10^{8} yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Hersch el. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
We use dust masses ($M_{dust}$) derived from far-infrared data and molecular gas masses ($M_{mol}$) based on CO luminosity, to calibrate proxies based on a combination of the galaxy Balmer decrement, disk inclination and gas metallicity. We use such proxies to estimate $M_{dust}$ and $M_{mol}$ in the local SDSS sample of star-forming galaxies (SFGs). We study the distribution of $M_{dust}$ and $M_{mol}$ along and across the Main Sequence (MS) of SFGs. We find that $M_{dust}$ and $M_{mol}$ increase rapidly along the MS with increasing stellar mass ($M_*$), and more marginally across the MS with increasing SFR (or distance from the relation). The dependence on $M_*$ is sub-linear for both $M_{dust}$ and $M_{mol}$. Thus, the fraction of dust ($f_{dust}$) and molecular gas mass ($f_{mol}$) decreases monotonically towards large $M_*$. The star formation efficiency (SFE, the inverse of the molecular gas depletion time) depends strongly on the distance from the MS and it is constant along the MS. As nearly all galaxies in the sample are central galaxies, we estimate the dependence of $f_{dust}$ and $f_{gas}$ on the host halo mass and find a tight anti-correlation. As the region where the MS is bending is numerically dominated by massive halos, we conclude that the bending of the MS is due to lower availability of molecular gas mass in massive halos rather than a lower efficiency in forming stars.
We present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition LCO(5-4), where LCO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift.
We report a Giant Metrewave Radio Telescope (GMRT) search for HI 21cm emission from a large sample of star-forming galaxies at $z approx 1.18 - 1.34$, lying in sub-fields of the DEEP2 Redshift Survey. The search was carried out by co-adding (stacking ) the HI 21cm emission spectra of 857 galaxies, after shifting each galaxys HI 21cm spectrum to its rest frame. We obtain the $3sigma$ upper limit S$_{rm{HI}} < 2.5 mu$Jy on the average HI 21cm flux density of the 857 galaxies, at a velocity resolution of $approx 315$ km s$^{-1}$. This yields the $3sigma$ constraint M$_{rm{HI}} < 2.1 times 10^{10} times left[Delta {rm V}/315 rm{km/s} right]^{1/2} textrm{M}_odot$ on the average HI mass of the 857 stacked galaxies, the first direct constraint on the atomic gas mass of galaxies at $z > 1$. The implied limit on the average atomic gas mass fraction (relative to stars) is ${rm M}_{rm GAS}/{rm M}_* < 0.5$, comparable to the cold molecular gas mass fraction in similar star-forming galaxies at these redshifts. We find that the cosmological mass density of neutral atomic gas in massive star-forming galaxies at $z approx 1.3$ is $Omega_{rm GAS} < 3.7 times 10^{-4}$, significantly lower than $Omega_{rm GAS}$ estimates in both galaxies in the local Universe and damped Lyman-$alpha$ absorbers at $z geq 2.2$. Massive blue star-forming galaxies thus do not appear to dominate the neutral atomic gas content of the Universe at $z approx 1.3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا