ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionic conductivity and relaxation dynamics in plastic-crystals with nearly globular molecules

72   0   0.0 ( 0 )
 نشر من قبل Peter Lunkenheimer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a dielectric investigation of the ionic charge transport and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and in two mixtures of CNA with the related plastic crystals adamantane or 2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The molecules of these compounds have nearly globular shape and, thus, the so-called revolving-door mechanism assumed to promote ionic charge transport via molecular reorientations in other PC electrolytes, should not be active here. Indeed, a comparison of the dc resistivity and the reorientational alpha-relaxation times in the investigated PCs, reveals complete decoupling of both dynamics. Similar to other PCs, we find a significant mixing-induced enhancement of the ionic conductivity. Finally, these solid-state electrolytes reveal a second relaxation process, slower than the alpha-relaxation, which is related to ionic hopping. Due to the mentioned decoupling, it can be unequivocally detected and is not superimposed by the reorientational contributions as found for most other ionic conductors.



قيم البحث

اقرأ أيضاً

Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl astic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
108 - D. Reuter , P. Lunkenheimer , 2019
Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applica tions as solid-state electrolytes, e.g., in batteries. Interestingly, it was found that the mixing of two different plastic-crystalline materials can considerably enhance the ionic dc conductivity, an important benchmark quantity for electrochemical applications. An example is the admixture of different nitriles to succinonitrile, the latter being one of the most prominent plastic-crystalline ionic conductors. However, until now only few such mixtures were studied. In the present work, we investigate succinonitrile mixed with malononitrile, adiponitrile, and pimelonitrile, to which 1 mol% of Li ions were added. Using differential scanning calorimetry and dielectric spectroscopy, we examine the phase behavior and the dipolar and ionic dynamics of these systems. We especially address the mixing-induced enhancement of the ionic conductivity and the coupling of the translational ionic mobility to the molecular reorientational dynamics, probably arising via a revolving-door mechanism.
We have performed a thorough examination of the reorientational relaxation dynamics and the ionic charge transport of three typical deep eutectic solvents, ethaline, glyceline and reline by broadband dielectric spectroscopy. Our experiments cover a b road temperature range from the low-viscosity liquid down to the deeply supercooled state, allowing to investigate the significant influence of glassy freezing on the ionic charge transport in these systems. In addition, we provide evidence for a close coupling of the ionic conductivity in these materials to reorientational dipolar motions which should be considered when searching for deep eutectic solvents optimized for electrochemical applications.
Ultra-precision machining of metals, the breaking of nanowires under tensile stress and fracture of nanoscale materials are examples of technologically important processes which are both extremely difficult and costly to investigate experimentally. W e describe a multiscale method for the simulation of such systems in which the energetically active region is modelled using a robust tight-binding scheme developed at the Naval Research Laboratory (NRL-TB) and the rest of the system is treated with molecular dynamics. We present a computer code implementing the method, geared towards non-equilibrium, cross-scaled tight-binding and molecular dynamics simulations. Apart from the presentation of the method and implementation, we discuss preliminary physical results obtained and discuss their validity.
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-rang e interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا