Adiabatic quantum computation (AQC), which is particularly useful for combinatorial optimization, becomes more powerful by using excited states, instead of ground states. However, the excited-state AQC is prone to errors due to dissipation. Here we propose the excited-state AQC started with the most stable state, i.e., the vacuum state. This counterintuitive approach becomes possible by using a driven quantum system, or more precisely, a network of Kerr-nonlinear parametric oscillators (KPOs). By numerical simulations, we show that some hard instances, where standard ground-state AQC with KPOs fails to find their optimal solutions, can be solved by the present approach, where nonadiabatic transitions are rather utilized. We also show that the use of the vacuum state as an initial state leads to robustness against errors due to dissipation, as expected, compared to the use of a really excited (nonvacuum) state as an initial state. Thus, the present work offers new possibilities for quantum computation and driven quantum systems.