ﻻ يوجد ملخص باللغة العربية
Network virtualization is a way to simultaneously run multiple heterogeneous architectures on a shared substrate. The main issue in the virtualization of networks is the problem of mapping virtual networks to the substrate network. How to manage substrate resources when performing the mapping will have an effective role in improving the use of infrastructure resources and consequently better mapping. By writing a module in the controller for dynamic resource management, an initial mapping has been attempted until the request arrives, if sufficient resources are available, but until the arrival of the n request that their initial mapping is successful, writing the rules in the switches is postponed. The simulation results with the NS2 simulator showed that compared to the two similar approaches, the proposed method could reduce the delay and the cost by maintaining the acceptance rate. Keywords: Heterogeneous, Network virtualization, Software-defined network, Virtual network mapping, Substrate Resources
The fast growth of Internet-connected embedded devices demands for new capabilities at the network edge. These new capabilities are local processing, fast communications, and resource virtualization. The current work aims to address the previous capa
There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication cou
Software defined networking (SDN) has emerged as a promising paradigm for making the control of communication networks flexible. SDN separates the data packet forwarding plane, i.e., the data plane, from the control plane and employs a central contro
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to p
The evolution of software defined networking (SDN) has played a significant role in the development of next-generation networks (NGN). SDN as a programmable network having service provisioning on the fly has induced a keen interest both in academic w