ﻻ يوجد ملخص باللغة العربية
We study cluster adjacency conjectures for amplitudes in maximally supersymmetric Yang-Mills theory. We show that the n-point one-loop NMHV ratio function satisfies Steinmann cluster adjacency. We also show that the one-loop BDS-like normalized NMHV amplitude satisfies cluster adjacency between Yangian invariants and final symbol entries up to 9-points. We present conjectures for cluster adjacency properties of Plucker coordinates, quadratic cluster variables, and NMHV Yangian invariants that generalize the notion of weak separation.
We present a new method for computing the Konishi anomalous dimension in N=4 SYM at weak coupling. It does not rely on the conventional Feynman diagram technique and is not restricted to the planar limit. It is based on the OPE analysis of the four-p
Using four-dimensional unitarity and MHV-rules we calculate the one-loop MHV amplitudes with all external particles in the adjoint representation for N=2 supersymmetric QCD with N_f fundamental flavours. We start by considering such amplitudes in the
We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop N=4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spe
We conjecture that every rational Yangian invariant in N=4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4,n) to check numerous examples.
We compute the dilatation generator in the su(2) sector of planar N=4 super Yang-Mills theory at four-loops. We use the known world-sheet scattering matrix to constrain the structure of the generator. The remaining few coefficients can be computed di