ﻻ يوجد ملخص باللغة العربية
Very small electromechanical coupling coefficient in micro-electromechanical systems (MEMS) or acoustic resonators is quite of a concern for oscillator performance, specially at mmWave frequencies. This small coefficient is the manifestation of the small ratio of motional capacitance to static capacitance in the resonators. This work provides a general solution to overcome the problem of relatively high static capacitance at mmWave frequencies and presents analysis and design techniques for achieving extremely low phase noise and a very high figure-of-merit (FoM) in an on-chip MEMS resonator based mmWave oscillator. The proposed analysis and techniques are validated with design and simulation of a 30 GHz oscillator with MEMS resonator having quality factor of 10,000 in 14 nm GF technology. Post layout simulation results show that it achieves a phase noise of -132 dBc/Hz and FoM of 217 dBc/Hz at offset of 1 MHz.
(RFT) allows very high-Q active mode resonators, promising crystal-less monolithic clock generation for mmWave systems. However, there is a strong need for design of mmWave oscillators that utilize the high-Q of active-mode RFT (AM-RFT) optimally, wh
Beamforming technology is widely used in millimeter wave systems to combat path losses, and beamformers are usually selected from a predefined codebook. Unfortunately, the traditional codebook design neglects the beam squint effect, and this will cau
Power transfer limits or transfer capability (TC) directly relate to the system operation and control as well as electricity markets. As a consequence, their assessment has to comply with static constraints, such as line thermal limits, and dynamic c
With the explosively increasing demands on the network capacity, throughput and number of connected wireless devices, massive connectivity is an urgent problem for the next generation wireless communications. In this paper, we propose a grant-free ac
Applications towards 6G have brought a huge interest towards arrays with a high number of antennas and operating within the millimeter and sub-THz bandwidths for joint communication and localization. With such large arrays, the plane wave approximati