ترغب بنشر مسار تعليمي؟ اضغط هنا

Triaging moderate COVID-19 and other viral pneumonias from routine blood tests

81   0   0.0 ( 0 )
 نشر من قبل Forrest Bao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The COVID-19 is sweeping the world with deadly consequences. Its contagious nature and clinical similarity to other pneumonias make separating subjects contracted with COVID-19 and non-COVID-19 viral pneumonia a priority and a challenge. However, COVID-19 testing has been greatly limited by the availability and cost of existing methods, even in developed countries like the US. Intrigued by the wide availability of routine blood tests, we propose to leverage them for COVID-19 testing using the power of machine learning. Two proven-robust machine learning model families, random forests (RFs) and support vector machines (SVMs), are employed to tackle the challenge. Trained on blood data from 208 moderate COVID-19 subjects and 86 subjects with non-COVID-19 moderate viral pneumonia, the best result is obtained in an SVM-based classifier with an accuracy of 84%, a sensitivity of 88%, a specificity of 80%, and a precision of 92%. The results are found explainable from both machine learning and medical perspectives. A privacy-protected web portal is set up to help medical personnel in their practice and the trained models are released for developers to further build other applications. We hope our results can help the world fight this pandemic and welcome clinical verification of our approach on larger populations.



قيم البحث

اقرأ أيضاً

The Reverse Transcription Polymerase Chain Reaction (RTPCR) test is the silver bullet diagnostic test to discern COVID infection. Rapid antigen detection is a screening test to identify COVID positive patients in little as 15 minutes, but has a lower sensitivity than the PCR tests. Besides having multiple standardized test kits, many people are getting infected & either recovering or dying even before the test due to the shortage and cost of kits, lack of indispensable specialists and labs, time-consuming result compared to bulk population especially in developing and underdeveloped countries. Intrigued by the parametric deviations in immunological & hematological profile of a COVID patient, this research work leveraged the concept of COVID-19 detection by proposing a risk-free and highly accurate Stacked Ensemble Machine Learning model to identify a COVID patient from communally available-widespread-cheap routine blood tests which gives a promising accuracy, precision, recall & F1-score of 100%. Analysis from R-curve also shows the preciseness of the risk-free model to be implemented. The proposed method has the potential for large scale ubiquitous low-cost screening application. This can add an extra layer of protection in keeping the number of infected cases to a minimum and control the pandemic by identifying asymptomatic or pre-symptomatic people early.
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020. The basic structure of STNN is similar to the Recurrent Neural Network (RNN) incorporating with not only temp oral data but also spatial features. Two improved STNN architectures, namely the STNN with Augmented Spatial States (STNN-A) and the STNN with Input Gate (STNN-I), are proposed, which ensure more predictability and flexibility. STNN and its variants can be trained using Stochastic Gradient Descent (SGD) algorithm and its improved variants (e.g., Adam, AdaGrad and RMSProp). Our STNN models are compared with several classical epidemic prediction models, including the fully-connected neural network (BPNN), and the recurrent neural network (RNN), the classical curve fitting models, as well as the SEIR dynamical system model. Numerical simulations demonstrate that STNN models outperform many others by providing more accurate fitting and prediction, and by handling both spatial and temporal data.
Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: (i) the great geographical differences in the degree of virus contagiousness and lethality which were found in the different phases of th e epidemic progression, and (ii) the potential role of the infected peoples blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that in the subject-to-subject transfer SARS-CoV-2 conserves on its capsid the erythrocytes antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account and compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection.
SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop machine learning techniques to predict the spread of COVID-19. Prediction of the spread can allow counter measures and actions to be implemented to mitigate the spread of COVID-19. In this paper, we propose a deep learning technique, called Deep Sequential Prediction Model (DSPM) and machine learning based Non-parametric Regression Model (NRM) to predict the spread of COVID-19. Our proposed models were trained and tested on novel coronavirus 2019 dataset, which contains 19.53 Million confirmed cases of COVID-19. Our proposed models were evaluated by using Mean Absolute Error and compared with baseline method. Our experimental results, both quantitative and qualitative, demonstrate the superior prediction performance of the proposed models.
170 - Shuang Li , Lu Wang , Xinyun Chen 2021
Since the first coronavirus case was identified in the U.S. on Jan. 21, more than 1 million people in the U.S. have confirmed cases of COVID-19. This infectious respiratory disease has spread rapidly across more than 3000 counties and 50 states in th e U.S. and have exhibited evolutionary clustering and complex triggering patterns. It is essential to understand the complex spacetime intertwined propagation of this disease so that accurate prediction or smart external intervention can be carried out. In this paper, we model the propagation of the COVID-19 as spatio-temporal point processes and propose a generative and intensity-free model to track the spread of the disease. We further adopt a generative adversarial imitation learning framework to learn the model parameters. In comparison with the traditional likelihood-based learning methods, this imitation learning framework does not need to prespecify an intensity function, which alleviates the model-misspecification. Moreover, the adversarial learning procedure bypasses the difficult-to-evaluate integral involved in the likelihood evaluation, which makes the model inference more scalable with the data and variables. We showcase the dynamic learning performance on the COVID-19 confirmed cases in the U.S. and evaluate the social distancing policy based on the learned generative model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا