ﻻ يوجد ملخص باللغة العربية
This work deals with the challenge of learning and reasoning over language and vision data for the related downstream tasks such as visual question answering (VQA) and natural language for visual reasoning (NLVR). We design a novel cross-modality relevance module that is used in an end-to-end framework to learn the relevance representation between components of various input modalities under the supervision of a target task, which is more generalizable to unobserved data compared to merely reshaping the original representation space. In addition to modeling the relevance between the textual entities and visual entities, we model the higher-order relevance between entity relations in the text and object relations in the image. Our proposed approach shows competitive performance on two different language and vision tasks using public benchmarks and improves the state-of-the-art published results. The learned alignments of input spaces and their relevance representations by NLVR task boost the training efficiency of VQA task.
Commanding a robot to navigate with natural language instructions is a long-term goal for grounded language understanding and robotics. But the dominant language is English, according to previous studies on vision-language navigation (VLN). To go bey
Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper,
With the aim of matching a pair of instances from two different modalities, cross modality mapping has attracted growing attention in the computer vision community. Existing methods usually formulate the mapping function as the similarity measure bet
Although automated metrics are commonly used to evaluate NLG systems, they often correlate poorly with human judgements. Newer metrics such as BERTScore have addressed many weaknesses in prior metrics such as BLEU and ROUGE, which rely on n-gram matc
Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most exist