Place an $A$-particle at each site of a graph independently with probability $p$ and otherwise place a $B$-particle. $A$- and $B$-particles perform independent continuous time random walks at rates $lambda_A$ and $lambda_B$, respectively, and annihilate upon colliding with a particle of opposite type. Bramson and Lebowitz studied the setting $lambda_A = lambda_B$ in the early 1990s. Despite recent progress, many basic questions remain unanswered for when $lambda_A eq lambda_B$. For the critical case $p=1/2$ on low-dimensional integer lattices, we give a lower bound on the expected number of particles at the origin that matches physicists predictions. For the process with $lambda_B=0$ on the integers and the bidirected regular tree, we give sharp upper and lower bounds for the expected total occupation time of the root at and approaching criticality.