ﻻ يوجد ملخص باللغة العربية
The most remarkable feature of the ultraviolet auroras at Jupiter is the ever present and almost continuous curtain of bright emissions centered on each magnetic pole and called the main emissions. According to the classical theory, it results from an electric current loop transferring momentum from the Jovian ionosphere to the magnetospheric plasma. However, predictions based on these mainstream models have been recently challenged by observations from Juno and the Hubble Space Telescope. Here we review the main contradictory observations, expose their implications for the theory and discuss promising paths forward.
Jupiters bright persistent polar aurora and Earths dark polar region indicate that the planets magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetar
Different ultraviolet (UV) and infrared (IR) auroral features have been observed at Jupiter and Saturn. Using models related to UV and IR auroral emissions, we estimate the characteristic time scales for the emissions, and evaluate whether the observ
Context. The young active star BD +20 1790 is believed to host a substellar companion, revealed by radial-velocity measurements that detected the reflex motion induced on the parent star. Aims. A complete characterisation of the radial-velocity sig
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 and TESS data. All of these targets are part of young star-forming associations. Suggested explanations
MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earths magnetopause. In this paper, we re-exam