ﻻ يوجد ملخص باللغة العربية
We study the problem of interacting theories with (partially)-massless and conformal higher spin fields without matter in three dimensions. A new class of theories that have partially-massless fields is found, which significantly extends the well-known class of purely massless theories. More generally, it is proved that the complete theory has to have a form of the flatness condition for a connection of a Lie algebra, which, provided there is a non-degenerate invariant bilinear form, can be derived from the Chern-Simons action. We also point out the existence of higher spin theories without the dynamical graviton in the spectrum. As an application of a more general statement that the frame-like formulation can be systematically constructed starting from the metric one by employing a combination of the local BRST cohomology technique and the parent formulation approach, we also obtain an explicit uplift of any given metric-like vertex to its frame-like counterpart. This procedure is valid for general gauge theories while in the case of higher spin fields in d-dimensional Minkowski space one can even use as a starting point metric-like vertices in the transverse-traceless gauge. In particular, this gives the fully off-shell lift for transverse-traceless vertices.
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which
We compute the one-loop free energies of the type-A$_ell$ and type-B$_ell$ higher-spin gravities in $(d+1)$-dimensional anti-de Sitter (AdS$_{d+1}$) spacetime. For large $d$ and $ell$, these theories have a complicated field content, and hence it is
We study a class of non-unitary so(2,d) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class o
We revisit the problem of building consistent interactions for a multiplet of partially massless spin-2 fields in (anti-)de Sitter space. After rederiving and strengthening the existing no-go result on the impossibility of Yang-Mills type non-abelian
We determine the current exchange amplitudes for free totally symmetric tensor fields $vf_{mu_1 ... mu_s}$ of mass $M$ in a $d$-dimensional $dS$ space, extending the results previously obtained for $s=2$ by other authors. Our construction is based on