ﻻ يوجد ملخص باللغة العربية
This work is an extension of our earlier article, where a well-known integral representation of the logarithmic function was explored, and was accompanied with demonstrations of its usefulness in obtaining compact, easily-calculable, exact formulas for quantities that involve expectations of the logarithm of a positive random variable. Here, in the same spirit, we derive an exact integral representation (in one or two dimensions) of the moment of a nonnegative random variable, or the sum of such independent random variables, where the moment order is a general positive noninteger real (also known as fractional moments). The proposed formula is applied to a variety of examples with an information-theoretic motivation, and it is shown how it facilitates their numerical evaluations. In particular, when applied to the calculation of a moment of the sum of a large number, $n$, of nonnegative random variables, it is clear that integration over one or two dimensions, as suggested by our proposed integral representation, is significantly easier than the alternative of integrating over $n$ dimensions, as needed in the direct calculation of the desired moment.
A basic information theoretic model for summarization is formulated. Here summarization is considered as the process of taking a report of $v$ binary objects, and producing from it a $j$ element subset that captures most of the important features of
Given a probability measure $mu$ over ${mathbb R}^n$, it is often useful to approximate it by the convex combination of a small number of probability measures, such that each component is close to a product measure. Recently, Ronen Eldan used a stoch
A finite form of de Finettis representation theorem is established using elementary information-theoretic tools: The distribution of the first $k$ random variables in an exchangeable binary vector of length $ngeq k$ is close to a mixture of product d
This paper is focused on $f$-divergences, consisting of three main contributions. The first one introduces integral representations of a general $f$-divergence by means of the relative information spectrum. The second part provides a new approach for
During the last two decades, concentration of measure has been a subject of various exciting developments in convex geometry, functional analysis, statistical physics, high-dimensional statistics, probability theory, information theory, communication