Towards 1ULP evaluation of Daubechies Wavelets


الملخص بالإنكليزية

We present algorithms to numerically evaluate Daubechies wavelets and scaling functions to high relative accuracy. These algorithms refine the suggestion of Daubechies and Lagarias to evaluate functions defined by two-scale difference equations using splines; carefully choosing amongst a family of rapidly convergent interpolators which effectively capture all the smoothness present in the function and whose error term admits a small asymptotic constant. We are also able to efficiently compute derivatives, though with a smoothness-induced reduction in accuracy. An implementation is provided in the Boost Software Library.

تحميل البحث