ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum correlation entropy

76   0   0.0 ( 0 )
 نشر من قبل Joseph Schindler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems. This quantum correlation entropy $S^{rm QC}$ is additive over independent systems, is invariant under local unitary operations, measures total nonclassical correlations (vanishing on states with strictly classical correlation), and reduces to the entanglement entropy for bipartite pure states. It quantifies how well a quantum system can be understood via local measurements, and ties directly to non-equilibrium thermodynamics, including representing a lower bound on the quantum part of thermodynamic entropy production. We discuss two other measures of nonclassical correlation to which this entropy is equivalent, and argue that together they provide a unique thermodynamically distinguished measure.



قيم البحث

اقرأ أيضاً

130 - Gilad Gour , Mark M. Wilde 2018
The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact that the entropy of a state $rho$ can be formulated as the difference of the number of physical qubits and the relative entropy distance between $rho$ and the maximally mixed state, here we define the entropy of a channel $mathcal{N}$ as the difference of the number of physical qubits of the channel output with the relative entropy distance between $mathcal{N}$ and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put forward in [Gour, IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the environments share, gives a compelling operational interpretation of the entropy of a channel. The entropy of a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of the channel merging protocol. We define Renyi and min-entropies of a channel and prove that they satisfy the axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of the min-entropy of a channel satisfies the asymptotic equipartition property.
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponen tial martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally we complement the general formalism with numerical simulations of a qubit system.
We propose and experimentally measure an entropy that quantifies the volume of correlations among qubits. The experiment is carried out on a nearly isolated quantum system composed of a central spin coupled and initially uncorrelated with 15 other sp ins. Due to the spin-spin interactions, information flows from the central spin to the surrounding ones forming clusters of multi-spin correlations that grow in time. We design a nuclear magnetic resonance experiment that directly measures the amplitudes of the multi-spin correlations and use them to compute the evolution of what we call correlation Renyi entropy. This entropy keeps growing even after the equilibration of the entanglement entropy. We also analyze how the saturation point and the timescale for the equilibration of the correlation Renyi entropy depend on the system size.
362 - B. Leggio , A. Napoli , A. Messina 2013
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-the rmal contribution to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These features lead to a quantum definition of single trajectory entropy contributions, which accounts for the difference between classical and quantum trajectories and results in a quantum correction to the standard form of the integral fluctuation theorem.
86 - Tian Qiu , H. T. Quan 2020
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the v on Neumann entropy of a particle undergoing quantum Brownian motion. In both the strong and the weak coupling regimes, we obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high-temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy of the system. Moreover, under the Markovian approximation, we obtain the expression of the quantum corrections to the total entropy production rate ${e_{rm p}}$ and the heat dissipation rate ${h_{rm d}}$. Our results bring important insights to the understanding of entropy in open quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا