We investigate transport in the network of valley Hall states that emerges in minimally twisted bilayer graphene under interlayer bias. To this aim, we construct a scattering theory that captures the network physics. In the absence of forward scattering, symmetries constrain the network model to a single parameter that interpolates between one-dimensional chiral zigzag modes and pseudo-Landau levels. Moreover, we show how the coupling of zigzag modes affects magnetotransport. In particular, we find that scattering between parallel zigzag channels gives rise to Aharonov-Bohm oscillations that are robust against temperature, while coupling between zigzag modes propagating in different directions leads to Shubnikov-de Haas oscillations that are smeared out at finite temperature.