ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced light-shift compensation protocol in a continuous-wave microcell atomic clock

61   0   0.0 ( 0 )
 نشر من قبل Rodolphe Boudot
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light-shifts are known to be an important limitation to the mid- and long-term fractional frequency stability of different types of atomic clocks. In this article, we demonstrate the experimental implementation of an advanced anti-light shift interrogation protocol onto a continuous-wave (CW) microcell atomic clock based on coherent population trapping (CPT). The method, inspired by the Auto-Balanced Ramsey (ABR) spectroscopy technique demonstrated in pulsed atomic clocks, consists in the extraction of atomic-based information from two successive light-shifted clock frequencies obtained at two different laser power values. Two error signals, computed from the linear combination of signals acquired along a symmetric sequence, are managed in a dual-loop configuration to generate a clock frequency free from light-shift. Using this method, the sensitivity of the clock frequency to both laser power and microwave power variations can be reduced by more than an order of magnitude compared to normal operation. In the present experiment, the consideration of the non-linear light-shift dependence allowed to enhance light-shift mitigation. The implemented technique allows a clear improvement of the clock Allan deviation for time scales higher than 1000 s. This method could be applied in various kinds of atomic clocks such as CPT-based atomic clocks, double-resonance Rb clocks, or cell-stabilized lasers.



قيم البحث

اقرأ أيضاً

We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
We develop a method for extracting the physical parameters of interest for a dipole trapped cold atomic ensemble. This technique uses the spatially dependent ac-Stark shift of the trap itself to project the atomic distribution onto a light-shift broa dened transmission spectrum. We develop a model that connects the atomic distribution with the expected transmission spectrum. We then demonstrate the utility of the technique by deriving the temperature, trap depth, lifetime, and trapped atom number from data that was taken in a single shot experimental measurement.
We measure the dynamic differential scalar polarizabilities at 10.6 $mu$m for two candidate clock transitions in $^{176}mathrm{Lu}^+$. The fractional black body radiation (BBR) shifts at 300 K for the $^1S_0 leftrightarrow {^3D_1}$ and $^1S_0 leftrig htarrow {^3D_2}$ transitions are evaluated to be $-1.36,(9) times 10^{-18}$ and $2.70 ,(21) times10^{-17}$, respectively. The former is the lowest of any established optical atomic clock.
84 - A.I.Milstein , O. P. Sushkov , 2002
We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qu alitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a $p_{1/2}$-state starts from $alphaln(1/Zalpha)$-term, while for $s_{1/2}$-states it starts from $Zalpha^2$ term. Here $alpha$ is the fine structure constant and $Z$ is the nuclear charge. In the present work we calculate the $alpha$-terms for $2p$-states, the result for $2p_{1/2}$-state reads $(8alpha/9pi)[ln(1/(Zalpha)^2)+0.710]$. Even more interesting are $p_{3/2}$-states. In this case the ``correction is by several orders of magnitude larger than the ``leading FNS shift.
461 - Yongjun Cheng , J. Mitroy 2012
A calculation of the blackbody radiation shift of the B$^+$ clock transition is performed. The polarizabilities of the B$^+$ $2s^2$ $^1$S$^e$, $2s2p$ $^1$P$^o$, and $2s2p$ $^3$P$^o$ states are computed using the configuration interaction method with an underlying semi-empirical core potential. The recommended dipole polarizabilities are 9.64(3) $a_0^3$, 7.78(3) $a_0^3$ and 16.55(5) $a_0^3$ respectively. The derived frequency shift for the $2s^2$ $^1$S$^e$ $to$ $2s2p$ $^3$P$^o_0$ transition at 300 K is 0.0160(5) Hz. The dipole polarizabilities agree with an earlier relativistic calculation (Safronova {em et al.} Phys. Rev. Lett. {bf 107} 143006 (2011)) to better than 0.2%. Quadrupole and octupole polarizabilities and non-adiabatic multipole polarizabilities are also reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا