ﻻ يوجد ملخص باللغة العربية
We show that the presence of a magnetic monopole in position space gives rise to a violation of the fermion number conservation in chiral matter. Using the chiral kinetic theory, we derive a model-independent expression of such a violation in nonequilibrium many-body systems of chiral fermions. In local thermal equilibrium at finite temperature and chemical potential, in particular, this violation is proportional to the chemical potential with a topologically quantized coefficient. These consequences are due to the interplay between the Dirac monopole in position space and the Berry monopole in momentum space. Our mechanism can be applied to study the roles of magnetic monopoles in the nonequilibrium evolution of the early Universe.
In the presence of the fluid helicity $boldsymbol{v} cdot boldsymbol{omega}$, the magnetic field induces an electric current of the form $boldsymbol{j} = C_{rm HME} (boldsymbol{v} cdot boldsymbol{omega}) boldsymbol{B}$. This is the helical magnetic e
We develop topological criteria for the existence of electroweak magnetic monopoles and Z-strings and extend the Kibble mechanism to study their formation during the electroweak phase transition. The distribution of magnetic monopoles produces magnet
The gauge independence of the dynamical fermion mass generated through chiral symmetry breaking in QED in a strong, constant external magnetic field is critically examined. We present a (first, to the best of our knowledge) consistent truncation of t
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide gen
In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $mu$ and a chiral chemical potential $mu_