Single-realization recovery of a random Schrodinger equation with unknown source and potential


الملخص بالإنكليزية

In this paper, we study an inverse scattering problem associated with the stationary Schrodinger equation where both the potential and the source terms are unknown. The source term is assumed to be a generalised Gaussian random distribution of the microlocally isotropic type, whereas the potential function is assumed to be deterministic. The well-posedness of the forward scattering problem is first established in a proper sense. It is then proved that the rough strength of the random source can be uniquely recovered, independent of the unknown potential, by a single realisation of the passive scattering measurement. We develop novel techniques to completely remove a restrictive geometric condition in our earlier study [25], at an unobjectionable cost of requiring the unknown potential to be deterministic. The ergodicity is used to establish the single realization recovery, and the asymptotic arguments in our analysis are based on techniques from the theory of pseudo-differential operators and the stationary phase principle.

تحميل البحث