ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-iterative Simultaneous Rigid Registration Method for Serial Sections of Biological Tissue

67   0   0.0 ( 0 )
 نشر من قبل Chang Shu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel non-iterative algorithm to simultaneously estimate optimal rigid transformation for serial section images, which is a key component in volume reconstruction of serial sections of biological tissue. In order to avoid error accumulation and propagation caused by current algorithms, we add extra condition that the position of the first and the last section images should remain unchanged. This constrained simultaneous registration problem has not been solved before. Our algorithm method is non-iterative, it can simultaneously compute rigid transformation for a large number of serial section images in a short time. We prove that our algorithm gets optimal solution under ideal condition. And we test our algorithm with synthetic data and real data to verify our algorithms effectiveness.



قيم البحث

اقرأ أيضاً

Imperfect data (noise, outliers and partial overlap) and high degrees of freedom make non-rigid registration a classical challenging problem in computer vision. Existing methods typically adopt the $ell_{p}$ type robust estimator to regularize the fi tting and smoothness, and the proximal operator is used to solve the resulting non-smooth problem. However, the slow convergence of these algorithms limits its wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization, which can handle outliers and partial overlaps. We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlap, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/Juyong/Fast_RNRR.
Since the mapping relationship between definitized intra-interventional 2D X-ray and undefined pre-interventional 3D Computed Tomography(CT) is uncertain, auxiliary positioning devices or body markers, such as medical implants, are commonly used to d etermine this relationship. However, such approaches can not be widely used in clinical due to the complex realities. To determine the mapping relationship, and achieve a initializtion post estimation of human body without auxiliary equipment or markers, proposed method applies image segmentation and deep feature matching to directly match the 2D X-ray and 3D CT images. As a result, the well-trained network can directly predict the spatial correspondence between arbitrary 2D X-ray and 3D CT. The experimental results show that when combining our approach with the conventional approach, the achieved accuracy and speed can meet the basic clinical intervention needs, and it provides a new direction for intra-interventional registration.
This paper presents a novel algorithm that registers a collection of mono-modal 3D images in a simultaneous fashion, named as Direct Simultaneous Registration (DSR). The algorithm optimizes global poses of local frames directly based on the intensiti es of images (without extracting features from the images). To obtain the optimal result, we start with formulating a Direct Bundle Adjustment (DBA) problem which jointly optimizes pose parameters of local frames and intensities of panoramic image. By proving the independence of the pose from panoramic image in the iterative process, DSR is proposed and proved to be able to generate the same optimal poses as DBA, but without optimizing the intensities of the panoramic image. The proposed DSR method is particularly suitable in mono-modal registration and in the scenarios where distinct features are not available, such as Transesophageal Echocardiography (TEE) images. The proposed method is validated via simulated and in-vivo 3D TEE images. It is shown that the proposed method outperforms conventional sequential registration method in terms of accuracy and the obtained results can produce good alignment in in-vivo images.
117 - Suryansh Kumar 2019
A simple prior free factorization algorithm cite{dai2014simple} is quite often cited work in the field of Non-Rigid Structure from Motion (NRSfM). The benefit of this work lies in its simplicity of implementation, strong theoretical justification to the motion and structure estimation, and its invincible originality. Despite this, the prevailing view is, that it performs exceedingly inferior to other methods on several benchmark datasets cite{jensen2018benchmark,akhter2009nonrigid}. However, our subtle investigation provides some empirical statistics which made us think against such views. The statistical results we obtained supersedes Dai {it{et al.}}cite{dai2014simple} originally reported results on the benchmark datasets by a significant margin under some elementary changes in their core algorithmic idea cite{dai2014simple}. Now, these results not only exposes some unrevealed areas for research in NRSfM but also give rise to new mathematical challenges for NRSfM researchers. We argue that by textbf{properly} utilizing the well-established assumptions about a non-rigidly deforming shape i.e, it deforms smoothly over frames cite{rabaud2008re} and it spans a low-rank space, the simple prior-free idea can provide results which is comparable to the best available algorithms. In this paper, we explore some of the hidden intricacies missed by Dai {it{et. al.}} work cite{dai2014simple} and how some elementary measures and modifications can enhance its performance, as high as approx. 18% on the benchmark dataset. The improved performance is justified and empirically verified by extensive experiments on several datasets. We believe our work has both practical and theoretical importance for the development of better NRSfM algorithms.
292 - Lingjing Wang , Xiang Li , Yi Fang 2020
In this paper, we propose a novel method named GP-Aligner to deal with the problem of non-rigid groupwise point set registration. Compared to previous non-learning approaches, our proposed method gains competitive advantages by leveraging the power o f deep neural networks to effectively and efficiently learn to align a large number of highly deformed 3D shapes with superior performance. Unlike most learning-based methods that use an explicit feature encoding network to extract the per-shape features and their correlations, our model leverages a model-free learnable latent descriptor to characterize the group relationship. More specifically, for a given group we first define an optimizable Group Latent Descriptor (GLD) to characterize the gruopwise relationship among a group of point sets. Each GLD is randomly initialized from a Gaussian distribution and then concatenated with the coordinates of each point of the associated point sets in the group. A neural network-based decoder is further constructed to predict the coherent drifts as the desired transformation from input groups of shapes to aligned groups of shapes. During the optimization process, GP-Aligner jointly updates all GLDs and weight parameters of the decoder network towards the minimization of an unsupervised groupwise alignment loss. After optimization, for each group our model coherently drives each point set towards a middle, common position (shape) without specifying one as the target. GP-Aligner does not require large-scale training data for network training and it can directly align groups of point sets in a one-stage optimization process. GP-Aligner shows both accuracy and computational efficiency improvement in comparison with state-of-the-art methods for groupwise point set registration. Moreover, GP-Aligner is shown great efficiency in aligning a large number of groups of real-world 3D shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا