ﻻ يوجد ملخص باللغة العربية
Modal and nonmodal analyses of fluid flows provide fundamental insight into the early stages of transition to turbulence. Eigenvalues of the dynamical generator govern temporal growth or decay of individual modes, while singular values of the frequency response operator quantify the amplification of disturbances for linearly stable flows. In this paper, we develop well-conditioned ultraspherical and spectral integration methods for frequency response analysis of channel flows of Newtonian and viscoelastic fluids. Even if a discretization method is well-conditioned, we demonstrate that calculations can be erroneous if singular values are computed as the eigenvalues of a cascade connection of the frequency response operator and its adjoint. To address this issue, we utilize a feedback interconnection of the frequency response operator with its adjoint to avoid computation of inverses and facilitate robust singular value decomposition. Specifically, in contrast to conventional spectral collocation methods, the proposed method (i) produces reliable results in channel flows of viscoelastic fluids at high Weissenberg numbers ($sim 500$); and (ii) does not require a staggered grid for the equations in primitive variables.
Modal stability analysis provides information about the long-time growth or decay of small-amplitude perturbations around a steady-state solution of a dynamical system. In fluid flows, exponentially growing perturbations can initiate departure from l
Linear stability of horizontal and inclined stratified channel flows of Newtonian/non-Newtonian shear-thinning fluids is investigated with respect to all wavelength perturbations. The Carreau model has been chosen for the modeling of the rheology of
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-
The flow of viscoelastic fluids in channels and pipes remain poorly understood, particularly at low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure measurements and particle tracking. The law
The cross-spectral density (CSD) of the non-linear forcing in resolvent analyses is here quantified for the first time for turbulent channel flows. Direct numerical simulations (DNS) at $Re_{tau} =179$ and $Re_{tau} =543$ are performed. The CSDs are