ﻻ يوجد ملخص باللغة العربية
We explore the possibility that the star alpha Orionis (Betelgeuse) is the outcome of a merger that occurred in a low mass ratio (q = M2/M1 = 0.07 - 0.25) binary system some time in the past hundreds of thousands of years. To that goal, we present a simple analytical model to approximate the perturbed internal structure of a post-merger object following the coalescence of a secondary in the mass range 1-4 Msun into the envelope of a 15-17 Msun primary. We then compute the long-term evolution of post-merger objects for a grid of initial conditions and make predictions about their surface properties for evolutionary stages that are consistent with the observed location of Betelgeuse in the Hertzsprung-Russell diagram. We find that if a merger occurred after the end of the primarys main-sequence phase, while it was expanding toward becoming a red supergiant star and typically with radius ~200 - 300 Rsun, then its envelope is spun-up to values which remain in a range consistent with the Betelgeuse observations for thousands of years of evolution. We argue that the best scenario that can explain both the fast rotation of Betelgeuse and its observed large space velocity is one where a binary was dynamically ejected by its parent cluster a few million years ago and then subsequently merged. An alternative scenario in which the progenitor of Betelgeuse was spun up by accretion in a binary and released by the supernova explosion of the companion requires a finely tuned set of conditions but cannot be ruled out.
We previously proposed that Betelgeuse might have been spun up by accreting a companion of about 1 solar mass. Here we explore in more detail the possible systematics of such a merger and a larger range of accreted masses. We use the stellar evolutio
The dynamics of the surface and inner atmosphere of the red supergiant star Betelgeuse are the subject of numerous high angular resolution and spectroscopic studies. Here, we present three-telescope interferometric data obtained at 11.15 microns wave
Observations of the Galactic Center (GC) have accumulated a multitude of forensic evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rathe
Betelgeuse is one of the most magnificent stars in the sky, and one of the nearest red supergiants. Astronomers gathered in Paris in the Autumn of 2012 to decide what we know about its structure, behaviour, and past and future evolution, and how to p
We present optical spectrophotometry of the red supergiant Betelgeuse from 2020 February 15, during its recent unprecedented dimming episode. By comparing this spectrum to stellar atmosphere models for cool supergiants, as well as spectrophotometry o