ﻻ يوجد ملخص باللغة العربية
Dwarf spheroidal galaxies are compact stellar objects with small or negligible astrophysical backgrounds, widely considered as promising targets to search for a signal from the dark matter decay and annihilation. We present constraints on the lifetime of the superheavy decaying dark matter branching to the $qbar{q}$ channel in the mass range $10^{19} - 10^{25}$ eV based on the directional limits on the ultra-high-energy (UHE) gamma rays obtained by the Pierre Auger Observatory and the Telescope Array experiment. Attenuation effects during the propagation of UHE photons towards Earth are taken into account, with the strongest constraints derived for the Ursa Major II, Coma Berenices and Segue I galaxies.
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent c
If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the
We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10^9 GeV from gamma-ray bursts (GRBs) based on data from the second flight of the ANtarctic Impulsive Transient Antenna (ANITA). During the 31 day flight
We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescopes Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermis Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emissi
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. A