ﻻ يوجد ملخص باللغة العربية
The pursuit of high performance on public benchmarks has been the driving force for research in scene text recognition, and notable progress has been achieved. However, a close investigation reveals a startling fact that the state-of-the-art methods perform well on images with words within vocabulary but generalize poorly to images with words outside vocabulary. We call this phenomenon vocabulary reliance. In this paper, we establish an analytical framework to conduct an in-depth study on the problem of vocabulary reliance in scene text recognition. Key findings include: (1) Vocabulary reliance is ubiquitous, i.e., all existing algorithms more or less exhibit such characteristic; (2) Attention-based decoders prove weak in generalizing to words outside vocabulary and segmentation-based decoders perform well in utilizing visual features; (3) Context modeling is highly coupled with the prediction layers. These findings provide new insights and can benefit future research in scene text recognition. Furthermore, we propose a simple yet effective mutual learning strategy to allow models of two families (attention-based and segmentation-based) to learn collaboratively. This remedy alleviates the problem of vocabulary reliance and improves the overall scene text recognition performance.
Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention bas
Driven by deep learning and the large volume of data, scene text recognition has evolved rapidly in recent years. Formerly, RNN-attention based methods have dominated this field, but suffer from the problem of textit{attention drift} in certain situa
Inspired by speech recognition, recent state-of-the-art algorithms mostly consider scene text recognition as a sequence prediction problem. Though achieving excellent performance, these methods usually neglect an important fact that text in images ar
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we hav
As an important task in multimodal context understanding, Text-VQA (Visual Question Answering) aims at question answering through reading text information in images. It differentiates from the original VQA task as Text-VQA requires large amounts of s