ﻻ يوجد ملخص باللغة العربية
In this work, we systematically study the $alpha$ decay preformation factors $P_{alpha}$ and $alpha$ decay half-lives of 152 nuclei around $Z$ = 82, $N$ = 126 closed shells based on a generalized liquid drop model while $P_{alpha}$ is extracted from the ratio of the calculated $alpha$ decay half-life to the experimental one. The results show that there is an obvious linear relationship between $P_{alpha}$ and the product of valance protons (holes) $N_p$ and valance neutrons (holes) $N_n$. At the same time, we extract the $$P_{alpha}$ values of even-even nuclei around $emph{Z}$ = 82, $emph{N}$ = 126 closed shells from the work of Sun textit{et al.} [href {https://doi.org/10.1088/1361-6471/aac981} {J. Phys. G: Nucl. Part. Phys. $bm{45}$, 075106 (2018)}], in which the $P_{alpha}$ can be calculated by two different microscopic formulas. We find that the $P_{alpha}$ are also related to $N_pN_n$. Combining with our previous works [Sun textit{et al.}, href {https://doi.org/10.1103/PhysRevC.94.024338} {Phys. Rev. C $bm{94}$, 024338 (2016)}; Deng textit{et al.}, href {https://doi.org/10.1103/ PhysRevC 96.024318} {ibid. $bm{96}$, 024318 (2017)}; Deng textit{et al.}, href {https://doi.org/10.1103/PhysRevC.97.044322} {ibid. $bm{97}$, 044322 (2018)}] and the work of Seif textit{et al.} [href {http://dx.doi.org/10.1103/PhysRevC.84.064608}{Phys. Rev. C $bm{84}$, 064608 (2011)}], we suspect that this phenomenon of linear relationship for the nuclei around those closed shells is model independent. It may be caused by the effect of the valence protons (holes) and valence neutrons (holes) around the shell closures. Finally, using the formula obtained by fitting the $P_{alpha}$ calculated by the generalized liquid drop model (GLDM), we calculate the $alpha$ decay half-lives of these nuclei. The calculated results are agree with the experimental data well.
A large number of $(alpha,p)$ and $(alpha,n)$ reactions are known to play a fundamental role in nuclear astrophysics. This work presents a novel technique to study these reactions with the active target system MUSIC whose segmented anode allows the i
The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical $r$-process in producing nuclei heavier than $Asim190$. Despite their importance, the structure and properties of these nuclei remain experimen
$alpha$ decay is usually associated with both ground and low-lying isomeric states of heavy and superheavy nuclei, and the unpaired nucleon plays a key role on $alpha$ decay. In this work, we systematically studied the $alpha$ decay half-lives of odd
Longitudinal ternary and binary fission barriers of $^{36}$Ar, $^{56}$Ni and $^{252}$Cf nuclei have been determined within a rotational liquid drop model taking into account the nuclear proximity energy. For the light nuclei the heights of the ternar
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat