ﻻ يوجد ملخص باللغة العربية
We show that in superfluids with fermionic imbalance and uniform ground state, there are stable solitons. These solutions are formed of radial density modulations resulting in nodal rings. We demonstrate that these solitons exhibit nontrivial soliton-soliton and soliton-vortex interactions and can form complicated bound states in the form of soliton sacks. In a phase-modulating (Fulde-Ferrell) background, we find different solitonic states, in the form of stable vortex-antivortex pairs.
We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (F
We obtain a phase diagram of the spin imbalanced Hubbard model on the Lieb lattice, which is known to feature a flat band in its single-particle spectrum. Using the BCS mean-field theory for multiband systems, we find a variety of superfluid phases w
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton
We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas. The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest is in the behavior of the pair correl
We investigate the one-dimensional Hubbard ring with attractive interaction in the presence of imbalanced spin populations by using the exact diagonalization method. The singlet pairing correlation function is found to show spatial oscillations with