ﻻ يوجد ملخص باللغة العربية
The recently reported magnetic ordering in insulating two-dimensional (2D) materials, such as chromium triiodide (CrI$_3$) and chromium tribromide (CrBr$_3$), opens new possibilities for the fabrication of magneto-electronic devices based on 2D systems. Inevitably, the magnetization and spin dynamics in 2D magnets are strongly linked to Joule heating. Therefore, understanding the coupling between spin, charge and heat, i.e. spin caloritronic effects, is crucial. However, spin caloritronics in 2D ferromagnets remains mostly unexplored, due to their instability in air. Here we develop a fabrication method that integrates spin-active contacts with 2D magnets through hBN encapsulation, allowing us to explore the spin caloritronic effects in these materials. The angular dependence of the thermal spin signal of the CrBr$_3$/Pt system is studied, for different conditions of magnetic field and heating current. We highlight the presence of a significant magnetic proximity effect from CrBr$_3$ on Pt revealed by an anomalous Nernst effect in Pt, and suggest the contribution of the spin Seebeck effect from CrBr$_3$. These results pave the way for future magnonic devices using air-sensitive 2D magnetic insulators.
When two superconductors are connected across a ferromagnet, the spin configuration of the transferred Cooper pairs can be modulated due to magnetic exchange interaction. The resulting supercurrent can reverse its sign across the Josephson junction (
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic
The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st
Heavy fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behavior ranging from quantum criticality and non-Fermi liquid behavior to unconventional topolog
Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source wit