ﻻ يوجد ملخص باللغة العربية
We study the photospheric evolution of an exploding granule observed in the quiet Sun at high spatial ($0.3^{primeprime}$) and temporal (31.5 s) resolution by the imaging magnetograph Sunrise/IMaX in June 2009. These observations show that the exploding granule is cospatial to a magnetic flux emergence event occurring at mesogranular scale (up to 12 Mm$^{2}$ area). Using a modified version of the SIR code for inverting the IMaX spectropolarimetric measurements, we obtain information about the magnetic configuration of this photospheric feature. In particular, we find evidence of highly inclined emerging fields in the structure, carrying a magnetic flux content up to $4 times 10^{18}$ Mx. The balance between gas and magnetic pressure in the region of flux emergence, compared with a very quiet region of the Sun, indicates that the additional pressure carried by the emerging flux increases by about 5% the total pressure and appears to allow the granulation to be modified, as predicted by numerical simulations. The overall characteristics suggest that a multi-polar structure emerges into the photosphere, resembling an almost horizontal flux sheet. This seems to be associated with exploding granules. Finally, we discuss the origin of such flux emergence events.
Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {AA} spectral line within granules in the solar photosphere. We interpret the velocities a
Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region.
Context. High resolution magnetic field measurements are routinely done only in the solar photosphere. Higher layers like the chromosphere and corona can be modeled by extrapolating the photospheric magnetic field upward. In the solar corona, plasma
We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time
Our aim is to model the 3D magnetic field structure of the upper solar atmosphere, including regions of non-negligible plasma beta. We use high-resolution photospheric magnetic field measurements from SUNRISE/IMaX as boundary condition for a magneto-