ﻻ يوجد ملخص باللغة العربية
The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive.
Let $Rx$ denote the ring of polynomials in $g$ freely non-commuting variables $x=(x_1,...,x_g)$. There is a natural involution * on $Rx$ determined by $x_j^*=x_j$ and $(pq)^*=q^* p^*$ and a free polynomial $pinRx$ is symmetric if it is invariant unde
We analyze a class of sublinear functionals which characterize the interior and the exterior of a convex cone in a normed linear space.
We present a convex-concave reformulation of the reversible Markov chain estimation problem and outline an efficient numerical scheme for the solution of the resulting problem based on a primal-dual interior point method for monotone variational ineq
We study a class of non-unitary so(2,d) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class o
A definition of quasi-local energy in a gravitational field based upon its embedding into flat space is discussed. The outcome is not satisfactory from many points of view.