ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-filter techniques for quasi-neutral hybrid-kinetic models

63   0   0.0 ( 0 )
 نشر من قبل Silvio Sergio Cerri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The space-filter approach has proved a fundamental tool in studying turbulence in neutral fluids, providing the ability to analyze scale-to-scale energy transfer in configuration space. It is well known that turbulence in plasma presents challenges different from neutral fluids, especially when the scale of interests include kinetic effects. The space-filter approach is still largely unexplored for kinetic plasma. Here we derive the space-filtered (or, equivalently coarse-grained) equations in configuration space for a quasi-neutral hybrid-kinetic plasma model, in which ions are fully kinetic and electrons are a neutralizing fluid. Different models and closures for the electron fluid are considered, including finite electron-inertia effects and full electrons pressure-tensor dynamics. Implications for the cascade of turbulent fluctuations in real space depending on different approximations are discussed.



قيم البحث

اقرأ أيضاً

Magnetic reconnection (MR) plays a fundamental role in plasma dynamics under many different conditions, from space and astrophysical environments to laboratory devices. High-resolution in-situ measurements from space missions allow to study naturally occurring MR processes in great detail. Alongside direct measurements, numerical simulations play a key role in investigating the fundamental physics underlying MR. The choice of an adequate plasma model to be employed in numerical simulations, while also compromising with their computational cost, is crucial to efficiently address the problem. We consider a new plasma model that includes a refined electron response within the hybrid-kinetic framework (kinetic ions, fluid electrons). The extent to which this new model can reproduce a full-kinetic description of 2D MR, with particular focus on its robustness during the non-linear stage, is evaluated. We perform 2D simulations of MR with moderate guide field by means of three different plasma models: a hybrid-Vlasov-Maxwell model with isotropic, isothermal electrons, a hybrid-Vlasov-Landau-fluid (HVLF) model where an anisotropic electron fluid is equipped with a Landau-fluid closure, and a full-kinetic one. When compared to the full-kinetic case, the HVLF model effectively reproduces the main features of MR, as well as several aspects of the associated electron micro-physics and its feedback onto proton dynamics. This includes the global evolution of MR and the local physics occurring within the so-called electron-diffusion region, as well as the evolution of species pressure anisotropy. In particular, anisotropy driven instabilities (such as firehose, mirror, and cyclotron instabilities) play a relevant role in regulating electrons anisotropy during the non-linear stage of MR. As expected, the HVLF model captures all these features, except for the electron-cyclotron instability.
Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, formation and dissipation of thin current sheets, stochastic heating. It is now understood th at the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has so far been presented. In this letter we quantify such relationship analyzing the results of a two-dimensional high-resolution Hall-MHD simulation. In particular, we employ the technique of space-filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wavenumber. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low filling-factor of coherent structures (i.e. they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.
105 - C. S. Ng 2019
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region. One possible theoretical description of some of these structures is the concept of Bernstein-G reene-Kruskal (BGK) modes, which are exact nonlinear steady-state solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. We generalize exact solutions of two-dimensional BGK modes in a magnetized plasma with finite magnetic field strength [Ng, Bhattacharjee, and Skiff, Phys. Plasmas {bf13}, 055903 (2006)] to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such nonlinear solutions now satisfy exactly the Vlasov-Poisson-Amp`{e}re system of equations. Explicit examples with either positive or negative electric potential structure are provided.
The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincare reduction the ory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.
134 - H. Hietala 2009
The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetoson ic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا