ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation classes in generalized Kahler geometry

188   0   0.0 ( 0 )
 نشر من قبل Jeffrey Streets
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce natural deformation classes of generalized Kahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of Kahler class and Kahler cone to generalized Kahler geometry. Lastly we show that the generalized Kahler-Ricci flow preserves this generalized Kahler cone, and the underlying real Poisson tensor.



قيم البحث

اقرأ أيضاً

We introduce and study the notion of a biholomorphic gerbe with connection. The biholomorphic gerbe provides a natural geometrical framework for generalized Kahler geometry in a manner analogous to the way a holomorphic line bundle is related to Kahl er geometry. The relation between the gerbe and the generalized Kahler potential is discussed.
180 - Maciej Dunajski 2020
We construct the normal forms of null-Kahler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified set ting) appear in the Bridgeland stability conditions of the moduli spaces of Calabi-Yau three-folds. Using twistor methods we show that, in dimension four - where there is a connection with dispersionless integrability - the cohomogeneity-one anti-self-dual null-Kahler metrics are generically characterised by solutions to Painleve I or Painleve II ODEs.
We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-st rengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.
We formulate a Calabi-Yau type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahl er class, we conjecture unique solvability of Gualtieris Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeros of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-Kahler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implies Mumford-Takemoto slope stability obstructions, and using these we exhibit infinitely many topologically distinct complex manifolds in every dimension with vanishing first Chern class which do not admit Bismut Hermitian-Einstein metrics. This reformulation also leads to a new description of pluriclosed flow in terms of Hermitian metrics on holomorphic Courant algebroids, implying new global existence results, in particular on all complex non-Kahler surfaces of nonnegative Kodaira dimension. On complex manifolds which admit Bismut-flat metrics we show global existence and convergence of pluriclosed flow to a Bismut-flat metric, which in turn gives a classification of generalized Kahler structures on these spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا