ﻻ يوجد ملخص باللغة العربية
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method.
The local volatility model is a widely used for pricing and hedging financial derivatives. While its main appeal is its capability of reproducing any given surface of observed option prices---it provides a perfect fit---the essential component is a l
This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic fu
Sparked by Al`os, Leon, and Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson, and Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz, and Gatheral (2016) constitute the latest evolution
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a
In the present paper, a decomposition formula for the call price due to Al`{o}s is transformed into a Taylor type formula containing an infinite series with stochastic terms. The new decomposition may be considered as an alternative to the decomposit