ﻻ يوجد ملخص باللغة العربية
We discuss whether a simple theory of superconducting stripes coupled by Josephson tunneling can describe a metallic transport, once the coherent tunneling of pairs is suppressed by the magnetic field. For a clean system, the conclusion we reached is negative: the excitation spectrum of preformed pairs consists of Landau levels, and once the magnetic field exceeds a critical value, the transport becomes insulating. As a speculation, we suggest that a Bose metal can exist in disordered systems provided that the disorder is strong enough to localize some pairs. Then the coupling between propagating and localized pairs broadens the Landau levels, resulting in a metallic conductivity. Our model respects the particle-hole symmetry, which leads to a zero Hall response. And intriguingly, the resulting anomalous metallic state has no Drude peak and the spectral weight of the cyclotron resonance vanishes at low temperatures.
Experimentally and mysteriously, the concentration of quasiparticles in a gapped superconductor at low temperatures always by far exceeds its equilibrium value. We study the dynamics of localized quasiparticles in superconductors with a spatially flu
The magnetization of a planar heterostructure of periodically alternating type-II superconductor and soft-magnet strips exposed to a transverse external magnetic field is studied. An integral equation governing the sheet current distribution in the M
It is shown that the application of sufficiently strong magnetic field to the odd-frequency paired Pair Density Wave state described in Phys. Rev. B 94, 165114 (2016) leads to formation of a low temperature metallic state with zero Hall response. App
We show that while orbital magnetic field and disorder, acting individually weaken superconductivity, acting together they produce an intriguing evolution of a two-dimensional type-II s-wave superconductor. For weak disorder, the critical field H_c a
We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66 nm diam