ترغب بنشر مسار تعليمي؟ اضغط هنا

Inversion and Symmetries of the Star Transform

173   0   0.0 ( 0 )
 نشر من قبل Gaik Ambartsoumian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star transform is a generalized Radon transform mapping a function of two variables to its integrals along star-shaped trajectories, which consist of a finite number of rays emanating from a common vertex. Such operators appear in mathematical models of various imaging modalities based on scattering of elementary particles. The paper presents a comprehensive study of the inversion of the star transform. We describe the necessary and sufficient conditions for invertibility of the star transform, introduce a new inversion formula and discuss its stability properties. As an unexpected bonus of our approach, we prove a conjecture from algebraic geometry about the zero sets of elementary symmetric polynomials.



قيم البحث

اقرأ أيضاً

By exploring a spinor space whose elements carry a spin 1/2 representation of the Lorentz group and satisfy the the Fierz-Pauli-Kofink identities we show that certain symmetries operations form a Lie group. Moreover, we discuss the reflex of the Dira c dynamics in the spinor space. In particular, we show that the usual dynamics for massless spinors in the spacetime is related to an incompressible fluid behavior in the spinor space.
249 - V. V. Varlamov 2014
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown t hat tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries $P$, $T$ and their combination $PT$ are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation $C$ is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation $C$ allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincar{e} group and $SU(3)$-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of $SU(3)$). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of $SU(3)$-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann--Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
202 - A. Buryak 2014
Recently R. Pandharipande, J. Solomon and R. Tessler initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers is a specific solution of a system of PDEs, that they called the open KdV equations. In this paper we show that the open KdV equations are closely related to the equations for the wave function of the KdV hierarchy. This allows us to give an explicit formula for the specific solution in terms of Wittens generating series of the intersection numbers on the moduli space of stable curves.
We construct Darboux-Moutard type transforms for the two-dimensional conductivity equation. This result continues our recent studies of Darboux-Moutard type transforms for generalized analytic functions. In addition, at least, some of the Darboux-Mou tard type transforms of the present work admit direct extension to the conductivity equation in multidimensions. Relations to the Schrodinger equation at zero energy are also shown.
188 - M. C. Nucci , D. Levi 2011
We show that $lambda$-symmetries can be algorithmically obtained by using the Jacobi last multiplier. Several examples are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا