ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Detection of Rest Disruptions in Critically Ill Patients

62   0   0.0 ( 0 )
 نشر من قبل Vasundhra Iyengar
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Sleep has been shown to be an indispensable and important component of patients recovery process. Nonetheless, sleep quality of patients in the Intensive Care Unit (ICU) is often low, due to factors such as noise, pain, and frequent nursing care activities. Frequent sleep disruptions by the medical staff and/or visitors at certain times might lead to disruption of patient sleep-wake cycle and can also impact the severity of pain. Examining the association between sleep quality and frequent visitation has been difficult, due to lack of automated methods for visitation detection. In this study, we recruited 38 patients to automatically assess visitation frequency from captured video frames. We used the DensePose R-CNN (ResNet-101) model to calculate the number of people in the room in a video frame. We examined when patients are interrupted the most, and we examined the association between frequent disruptions and patient outcomes on pain and length of stay.



قيم البحث

اقرأ أيضاً

Quantification of myocardial perfusion has the potential to improve detection of regional and global flow reduction. Significant effort has been made to automate the workflow, where one essential step is the arterial input function (AIF) extraction. Since failure here invalidates quantification, high accuracy is required. For this purpose, this study presents a robust AIF detection method using the convolutional neural net (CNN) model. CNN models were trained by assembling 25,027 scans (N=12,984 patients) from three hospitals, seven scanners. A test set of 5,721 scans (N=2,805 patients) evaluated model performance. The 2D+T AIF time series was inputted into CNN. Two variations were investigated: a) Two Classes (2CS) for background and foreground (LV mask); b) Three Classes (3CS) for background, foreground LV and RV. Final model was deployed on MR scanners via the Gadgetron InlineAI. Model loading time on MR scanner was ~340ms and applying it took ~180ms. The 3CS model successfully detect LV for 99.98% of all test cases (1 failed out of 5,721 cases). The mean Dice ratio for 3CS was 0.87+/-0.08 with 92.0% of all test cases having Dice ratio >0.75, while the 2CS model gave lower Dice of 0.82+/-0.22 (P<1e-5). Extracted AIF signals using CNN were further compared to manual ground-truth for foot-time, peak-time, first-pass duration, peak value and area-under-curve. No significant differences were found for all features (P>0.2). This study proposed, validated, and deployed a robust CNN solution to detect the LV for the extraction of the AIF signal used in fully automated perfusion flow mapping. A very large data cohort was assembled and resulting models were deployed to MR scanners for fully inline AI in clinical hospitals.
Pain and physical function are both essential indices of recovery in critically ill patients in the Intensive Care Units (ICU). Simultaneous monitoring of pain intensity and patient activity can be important for determining which analgesic interventi ons can optimize mobility and function, while minimizing opioid harm. Nonetheless, so far, our knowledge of the relation between pain and activity has been limited to manual and sporadic activity assessments. In recent years, wearable devices equipped with 3-axis accelerometers have been used in many domains to provide a continuous and automated measure of mobility and physical activity. In this study, we collected activity intensity data from 57 ICU patients, using the Actigraph GT3X device. We also collected relevant clinical information, including nurse assessments of pain intensity, recorded every 1-4 hours. Our results show the joint distribution and state transition of joint activity and pain states in critically ill patients.
Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging a vailability of streaming electronic health record data or capture time-sensitive individual physiological patterns, a critical task in the intensive care unit. We propose a novel acuity score framework (DeepSOFA) that leverages temporal measurements and interpretable deep learning models to assess illness severity at any point during an ICU stay. We compare DeepSOFA with SOFA (Sequential Organ Failure Assessment) baseline models using the same model inputs and find that at any point during an ICU admission, DeepSOFA yields significantly more accurate predictions of in-hospital mortality. A DeepSOFA model developed in a public database and validated in a single institutional cohort had a mean AUC for the entire ICU stay of 0.90 (95% CI 0.90-0.91) compared with baseline SOFA models with mean AUC 0.79 (95% CI 0.79-0.80) and 0.85 (95% CI 0.85-0.86). Deep models are well-suited to identify ICU patients in need of life-saving interventions prior to the occurrence of an unexpected adverse event and inform shared decision-making processes among patients, providers, and families regarding goals of care and optimal resource utilization.
Recent development of quantitative myocardial blood flow (MBF) mapping allows direct evaluation of absolute myocardial perfusion, by computing pixel-wise flow maps. Clinical studies suggest quantitative evaluation would be more desirable for objectiv ity and efficiency. Objective assessment can be further facilitated by segmenting the myocardium and automatically generating reports following the AHA model. This will free user interaction for analysis and lead to a one-click solution to improve workflow. This paper proposes a deep neural network based computational workflow for inline myocardial perfusion analysis. Adenosine stress and rest perfusion scans were acquired from three hospitals. Training set included N=1,825 perfusion series from 1,034 patients. Independent test set included 200 scans from 105 patients. Data were consecutively acquired at each site. A convolution neural net (CNN) model was trained to provide segmentation for LV cavity, myocardium and right ventricular by processing incoming 2D+T perfusion Gd series. Model outputs were compared to manual ground-truth for accuracy of segmentation and flow measures derived on global and per-sector basis. The trained models were integrated onto MR scanners for effective inference. Segmentation accuracy and myocardial flow measures were compared between CNN models and manual ground-truth. The mean Dice ratio of CNN derived myocardium was 0.93 +/- 0.04. Both global flow and per-sector values showed no significant difference, compared to manual results. The AHA 16 segment model was automatically generated and reported on the MR scanner. As a result, the fully automated analysis of perfusion flow mapping was achieved. This solution was integrated on the MR scanner, enabling one-click analysis and reporting of myocardial blood flow.
93 - David Le , Minhaj Alam , Cham Yao 2019
Purpose: To test the feasibility of using deep learning for optical coherence tomography angiography (OCTA) detection of diabetic retinopathy (DR). Methods: A deep learning convolutional neural network (CNN) architecture VGG16 was employed for this s tudy. A transfer learning process was implemented to re-train the CNN for robust OCTA classification. In order to demonstrate the feasibility of using this method for artificial intelligence (AI) screening of DR in clinical environments, the re-trained CNN was incorporated into a custom developed GUI platform which can be readily operated by ophthalmic personnel. Results: With last nine layers re-trained, CNN architecture achieved the best performance for automated OCTA classification. The overall accuracy of the re-trained classifier for differentiating healthy, NoDR, and NPDR was 87.27%, with 83.76% sensitivity and 90.82% specificity. The AUC metrics for binary classification of healthy, NoDR and DR were 0.97, 0.98 and 0.97, respectively. The GUI platform enabled easy validation of the method for AI screening of DR in a clinical environment. Conclusion: With a transfer leaning process to adopt the early layers for simple feature analysis and to re-train the upper layers for fine feature analysis, the CNN architecture VGG16 can be used for robust OCTA classification of healthy, NoDR, and NPDR eyes. Translational Relevance: OCTA can capture microvascular changes in early DR. A transfer learning process enables robust implementation of convolutional neural network (CNN) for automated OCTA classification of DR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا