ﻻ يوجد ملخص باللغة العربية
Sleep has been shown to be an indispensable and important component of patients recovery process. Nonetheless, sleep quality of patients in the Intensive Care Unit (ICU) is often low, due to factors such as noise, pain, and frequent nursing care activities. Frequent sleep disruptions by the medical staff and/or visitors at certain times might lead to disruption of patient sleep-wake cycle and can also impact the severity of pain. Examining the association between sleep quality and frequent visitation has been difficult, due to lack of automated methods for visitation detection. In this study, we recruited 38 patients to automatically assess visitation frequency from captured video frames. We used the DensePose R-CNN (ResNet-101) model to calculate the number of people in the room in a video frame. We examined when patients are interrupted the most, and we examined the association between frequent disruptions and patient outcomes on pain and length of stay.
Quantification of myocardial perfusion has the potential to improve detection of regional and global flow reduction. Significant effort has been made to automate the workflow, where one essential step is the arterial input function (AIF) extraction.
Pain and physical function are both essential indices of recovery in critically ill patients in the Intensive Care Units (ICU). Simultaneous monitoring of pain intensity and patient activity can be important for determining which analgesic interventi
Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging a
Recent development of quantitative myocardial blood flow (MBF) mapping allows direct evaluation of absolute myocardial perfusion, by computing pixel-wise flow maps. Clinical studies suggest quantitative evaluation would be more desirable for objectiv
Purpose: To test the feasibility of using deep learning for optical coherence tomography angiography (OCTA) detection of diabetic retinopathy (DR). Methods: A deep learning convolutional neural network (CNN) architecture VGG16 was employed for this s