ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the AGN Unification Model at redshift z $sim$ 3 with MUSE observations of giant Ly$alpha$ nebulae

65   0   0.0 ( 0 )
 نشر من قبل Jakob Sebastiaan den Brok
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Ly$alpha$ nebulae around AGNs at redshift z$sim$3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Ly$alpha$ nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances $r>30$~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r$lesssim$30 pkpc) and the associated high values of the HeII to Ly$alpha$ ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Ly$alpha$ nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.



قيم البحث

اقرأ أيضاً

Direct Ly $alpha$ imaging of intergalactic gas at $zsim2$ has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-ba nd and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly $alpha$ nebulae around 17 bright radio-quiet quasars at $3<z<4$ that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly $alpha$ nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes $approx-1.8$. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively cold (T$sim$10$^4$K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at $3<z<4$ independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.
131 - Mark Swinbank 2015
We present deep MUSE integral-field unit (IFU) spectroscopic observations of the giant (~150 x 80 kpc) Ly-alpha halo around the z=4.1 radio galaxy TNJ J1338-1942. This 9-hr observation maps the two-dimensional kinematics of the Ly-alpha emission acro ss the halo. We identify two HI absorbers which are seen against the Ly-alpha emission, both of which cover the full 150 x 80 kpc extent of the halo and so have covering fractions ~1. The stronger and more blue-shifted absorber (dv~1200 km/s) has dynamics that mirror that of the underlying halo emission and we suggest that this high column material (n(HI) ~ 10^19.4 /cm^2), which is also seen in CIV absorption, represents an out-flowing shell that has been driven by the AGN (or star formation) within the galaxy. The weaker (n(HI)~10^14 /cm^2) and less blue shifted (dv~500 km/s) absorber most likely represents material in the cavity between the out-flowing shell and the Ly-alpha halo. We estimate that the mass in the shell must be of order 10^10 Msol -- a significant fraction of the ISM from a galaxy at z=4. The large scales of these coherent structures illustrate the potentially powerful influence of AGN feedback on the distribution and energetics of material in their surroundings. Indeed, the discovery of high-velocity (~1000 km/s), group-halo-scale (i.e. >150 kpc) and mass-loaded winds in the vicinity of the central radio source are broadly in agreement with the requirements of models that invoke AGN-driven outflows to regulate star formation and black-hole growth in massive galaxies at early times.
The intensity of the Cosmic UV background (UVB), coming from all sources of ionising photons such as star-forming galaxies and quasars, determines the thermal evolution and ionization state of the intergalactic medium (IGM) and is, therefore, a criti cal ingredient for models of cosmic structure formation. Most of the previous estimates are based on the comparison between observed and simulated Lyman-$alpha$ forest. We present the results of an independent method to constrain the product of the UVB photoionisation rate and the covering fraction of Lyman limit systems (LLSs) by searching for the fluorescent Lyman-$alpha$ emission produced by self-shielded clouds. Because the expected surface brightness is well below current sensitivity limits for direct imaging, we developed a new method based on three-dimensional stacking of the IGM around Lyman-$alpha$ emitting galaxies (LAEs) between 2.9<z<6.6 using deep MUSE observations. Combining our results with covering fractions of LLSs obtained from mock cubes extracted from the EAGLE simulation, we obtain new and independent constraints on the UVB at z>3 that are consistent with previous measurements, with a preference for relatively low UVB intensities at z=3, and which suggest a non-monotonic decrease of $Gamma$HI with increasing redshift between 3<z<5. This could suggest a possible tension between some UVB models and current observations which however require deeper and wider observations in Lyman-$alpha$ emission and absorption to be confirmed. Assuming instead a value of UVB from current models, our results constrain the covering fraction of LLSs at 3<z<4.5 to be less than 25% within 150kpc from LAEs.
159 - Masami Ouchi 2020
In this series of lectures, I review our observational understanding of high-$z$ Ly$alpha$ emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified pho tometrically (spectroscopically) at $zsim 0$ to $zsim 10$. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-$z$ galaxies, high-$z$ analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Ly$alpha$ sources extended over $sim 10-100$ kpc, dubbed Ly$alpha$ blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Ly$alpha$ damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.
We report the detection of the host galaxy of a damped Ly$alpha$ system (DLA) with log N(HI) $ [rm cm^{-2}]$ = $21.0 pm 0.10$ at $z approx 3.0091$ towards the background quasar SDSS J011852+040644 using the Palomar Cosmic Web Imager (PCWI) at the Hal e (P200) telescope. We detect Ly$alpha$ emission in the dark core of the DLA trough at a 3.3$sigma$ confidence level, with Ly$alpha$ luminosity of $L_{rm Lyalpha}$ $rm = (3.8 pm 0.8) times 10^{42} erg s^{-1}$, corresponding to a star formation rate of $gtrsim 2 rm M_{odot} yr^{-1}$ (considering a lower limit on Ly$alpha$ escape fraction $f_{esc}^{Ly{alpha}} sim 2%$) as typical for Lyman break galaxies at these redshifts. The Ly$alpha$ emission is blueshifted with respect to the systemic redshift derived from metal absorption lines by $281 pm 43$ km/s. The associated galaxy is at very small impact parameter of $lesssim 12 rm kpc$ from the background quasar, which is in line with the observed anticorrelation between column density and impact parameter in spectroscopic searches tracing the large-scale environments of DLA host galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا