ﻻ يوجد ملخص باللغة العربية
Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and comprehensive performance comparison of MFIF methods, such as the lack of large-scale test set and the random choices of objective evaluation metrics in the literature. To solve these issues, this paper presents a multi-focus image fusion benchmark (MFIFB) which consists a test set of 105 image pairs, a code library of 30 MFIF algorithms, and 20 evaluation metrics. MFIFB is the first benchmark in the field of MFIF and provides the community a platform to compare MFIF algorithms fairly and comprehensively. Extensive experiments have been conducted using the proposed MFIFB to understand the performance of these algorithms. By analyzing the experimental results, effective MFIF algorithms are identified. More importantly, some observations on the status of the MFIF field are given, which can help to understand this field better.
Multi-focus image fusion (MFF) is a popular technique to generate an all-in-focus image, where all objects in the scene are sharp. However, existing methods pay little attention to defocus spread effects of the real-world multi-focus images. Conseque
We address the multi-focus image fusion problem, where multiple images captured with different focal settings are to be fused into an all-in-focus image of higher quality. Algorithms for this problem necessarily admit the source image characteristics
Capturing an all-in-focus image with a single camera is difficult since the depth of field of the camera is usually limited. An alternative method to obtain the all-in-focus image is to fuse several images focusing at different depths. However, exist
Image decomposition is a crucial subject in the field of image processing. It can extract salient features from the source image. We propose a new image decomposition method based on convolutional neural network. This method can be applied to many im
Robust road segmentation is a key challenge in self-driving research. Though many image-based methods have been studied and high performances in dataset evaluations have been reported, developing robust and reliable road segmentation is still a major